

Regions of operation

- Regions of operation for MOS capacitor with *p*-type SC:
 - (a) accumulation: $\varphi_s < 0$
 - (b) depletion: $0 < \varphi_s < 2\varphi_F$
 - (c) inversion: $\varphi_s \ge 2\varphi_F$
- The condition $\phi_s=2 \phi_F$ is called **onset of inversion**:

$$\begin{aligned} n_s &= n_i \exp\left[\frac{E_{FS} - E_i(0)}{k_B T}\right] = n_i \exp\left(\frac{q \varphi_F}{k_B T}\right) \\ p_s &= n_i \exp\left[\frac{E_i(0) - E_{FS}}{k_B T}\right] = n_i \exp\left(-\frac{q \varphi_F}{k_B T}\right) \end{aligned} \rightarrow \begin{cases} n_s &= p(bulk) \\ n_s p_s &= n_i^2 \end{cases}$$

nanoHUB.org online simulations and more $\frac{K_1 \epsilon_0}{k_2 \epsilon_0} \xrightarrow{F_{t1}} \frac{K_1 \epsilon_0}{F_{t2}} \xrightarrow{F_{t2}} F_{t2}$ $F_{t1} = F_{t2}$ • Electric field profile for a MOS capacitor with p-type SC under depletion condition: $\frac{F_{t1}}{F_{t2}} = \frac{F_{t2}}{F_{t2}}$ • Mostwark for Computational Nanotechnology

nanoHUB.org 2. MOS Capacitor Electrostatics

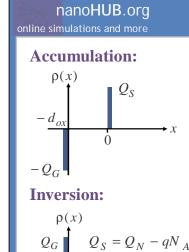
• The potential distribution (profile) in the semiconductor side of a MOS capacitor is described with the 1D Poisson equation: $\frac{d^2}{dt} = O(r)$

 $\frac{d^2\varphi}{dx^2} = -\frac{\rho(x)}{k_s \varepsilon_0}$

where the space charge density is given by:

$$\rho(x) = q \left(p - n + N_D^+ - N_A^- \right)$$

- The 1D Poisson equation can be solved using one of the following approaches:
 - (1) Delta-depletion approximation
 - (2) Exact analytical model
 - (3) Using numerical solution techniques



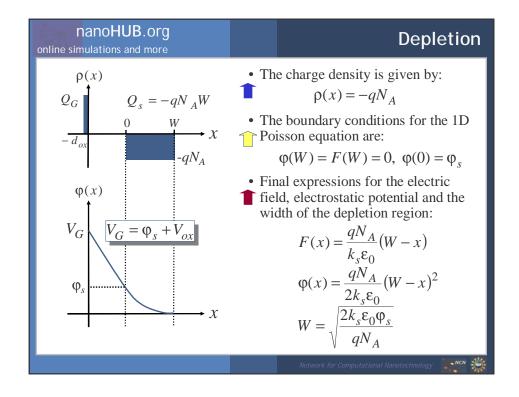
A. Delta-Depletion Approximation

- Accumulation charge is replaced with a delta-charge positioned right at the semiconductor interface.
- The electric field and the electrostatic potential are:

$$F(x) = \varphi(x) = 0$$
 for $x > 0$

- The charge associated with the minority carriers resides in an extremely narrow region at the SC/oxide interface.
- To first order we can assume that:

$$\varphi_s = 2\varphi_F \quad \text{for} \quad V_G > V_{th}$$



Depletion, Cont'd

online simulations and more

The surface potential is an internal parameter. We therefore need to relate φ_s to the gate voltage V_G using:

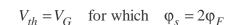
$$V_G = V_{ox} + \varphi_s = F_{ox} d_{ox} + \varphi_s$$

where:

$$F_{ox} = \frac{k_s}{k_{ox}} F_s = \frac{k_s}{k_{ox}} \frac{q N_A W}{k_s \varepsilon_0} = \frac{q N_A W}{k_{ox} \varepsilon_0}$$

• Final expression for the V_G - φ_s relationship:

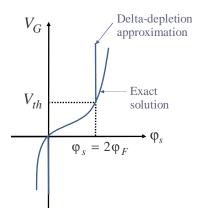
• Threshold voltage definition:



nanoHUB.org

Depletion, Cont'd

• Graphical representation of the V_G - φ_s relationship:



- Surface potential varies rapidly with V_G when the device is **depletion biased**. Gate voltage is divided proportionally between the semiconductor and the oxide.
- When the semiconductor is accumulated or inverted, it takes large V_G to produce small change in φ_s . Changes in the applied bias are almost all dropped across the oxide.

online simulations and more

B. Exact Analytical Model

To solve for the electrostatic potential and the electric field profile under arbitrary bias conditions, one needs to go beyond the delta-depletion approximation and use the exact expression for the charge density $\rho(x)$ in the 1D Poisson equation:

$$\rho(x) = q(p - n + N_D - N_A)$$

= $q(p_{po}e^{-\phi/V_T} - n_{po}e^{\phi/V_T} + N_D - N_A)$

• Analytical tricks that we need to use to get to the answer:

(1)
$$\frac{d^2 \varphi}{dx^2} = \frac{d}{dx} \left(\frac{d\varphi}{dx} \right) = \frac{d}{d\varphi} \left(\frac{d\varphi}{dx} \right) \frac{d\varphi}{dx} = \frac{u du}{d\varphi}, \quad u = \frac{d\varphi}{dx} = -F(x)$$

(2) $\rho(x) = 0$ in the semiconductor bulk, where $\varphi = 0$.

etwork for Computational Nanotechnology

nanoHUB.org

Exact Analytical Model, Cont'd

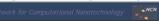
Integrating the 1D Poisson equation from the bulk up to some point at a distance x from the SC/oxide interface (at which point the potential is φ) we get:

$$F^{2}(\varphi) = \frac{2qp_{po}V_{T}}{k_{s}\varepsilon_{0}} \left[\left(e^{-\varphi/V_{T}} + \frac{\varphi}{V_{T}} - 1 \right) + \frac{n_{po}}{p_{po}} \left(e^{\varphi/V_{T}} - \frac{\varphi}{V_{T}} - 1 \right) \right]$$

Now, introducing the extrinsic *Debye* length L_D , we can write:

$$L_D = \sqrt{\frac{k_s \varepsilon_0 V_T}{q p_{po}}} \to F(\varphi) = \pm \frac{\sqrt{2} V_T}{L_D} f(\varphi)$$

- (+) sign is for positive φ
- (-) sign is for negative φ



Exact Analytical Model, Cont'd

- At the SC/oxide interface we have $\varphi = \varphi_s$, which leads to the following results for:
 - (a) electric field: $F_s = F(\varphi_s) = \pm \sqrt{2}V_T f(\varphi_s)/L_D$
 - (b) total sheet-charge density:

$$Q_s = -k_s \varepsilon_0 F_s$$

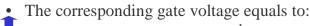
$$= \mp \frac{\sqrt{2}k_{s}\varepsilon_{0}V_{T}}{L_{D}} \left[\left(e^{-\varphi_{s}/V_{T}} + \frac{\varphi_{s}}{V_{T}} - 1 \right) + \frac{n_{po}}{p_{po}} \left(e^{\varphi_{s}/V_{T}} - \frac{\varphi_{s}}{V_{T}} - 1 \right) \right]$$

- \implies flat-band condition: $\varphi_s = 0 \rightarrow Q_s = 0$
- \implies depletion regime: $0 < \varphi_s < 2\varphi_F \rightarrow Q_s < 0$
- inversion regime: $\varphi_s > 2\varphi_F \rightarrow Q_s \propto -\exp(\varphi_s / 2V_T)$
- accumulation regime: $\varphi_s < 0 \rightarrow Q_s \propto \exp(-\varphi_s/2V_T)$

Network for Computational Nanotechnology

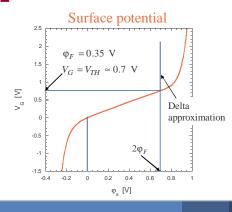
nanoHUB.org

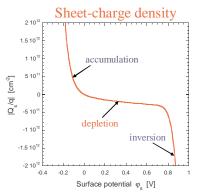
Exact Analytical Model, Cont'd

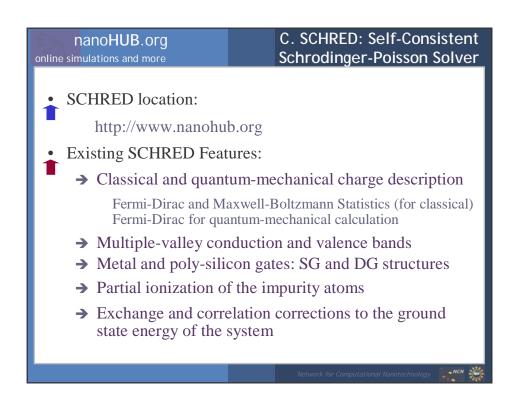


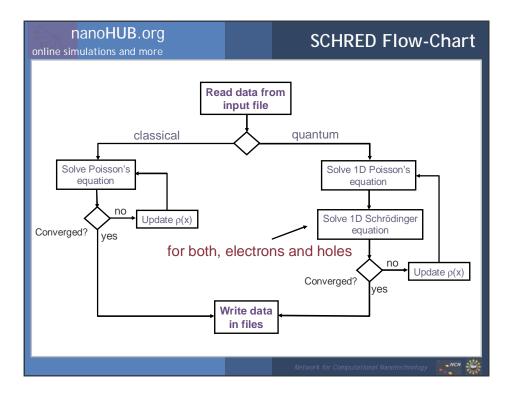
$$V_G = \varphi_s + V_{ox} = \varphi_s + \frac{k_s}{k_{ox}} F_s d_{ox}$$

Simulation results for $N_A=10^{16}$ cm⁻³ and $d_{ox}=4$ nm:

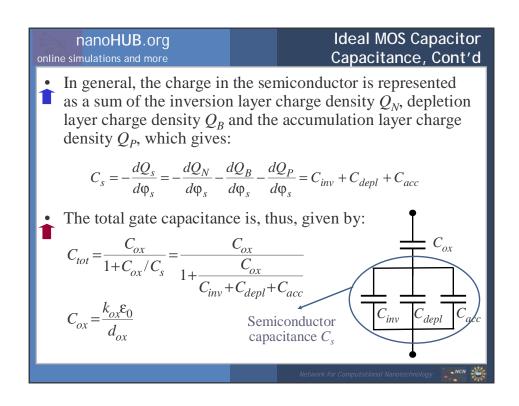








nanoHUB.org online simulations and more 3. Ideal MOS Capacitor Capacitance • The capacitance per unit area of an MOS capacitor is calculated using: $C_{tot} = \frac{dQ_G}{dV_G} = -\frac{dQ_S}{d(V_{ox} + \varphi_S)} = \frac{1}{-\frac{dV_{ox}}{dQ_S} - \frac{d\varphi_S}{dQ_S}}$ $= \frac{1}{1/C_{ox} + 1/C_S} = \frac{C_{ox}}{1 + C_{ox}/C_S}$ where: • C_{ox} is the oxide capacitance • C_{s} is the SC capacitance



Ideal MOS Capacitor Capacitance - Accumulation

online simulations and more

• Using the analytical model expression for the semiconductor charge per unit area Q_s , we get:

$$C_{s} = -\frac{dQ_{s}}{d\varphi_{s}} = Cso \frac{\left| 1 - e^{-\varphi_{s}/V_{T}} + \frac{n_{po}}{p_{po}} \left(e^{\varphi_{s}/V_{T}} - 1 \right) \right|}{\sqrt{2}f(\varphi_{s})}$$

$$f(\varphi_{s}) = \left[e^{-\varphi_{s}/V_{T}} + \frac{\varphi_{s}}{V_{T}} - 1 + \frac{n_{po}}{p_{po}} \left(e^{\varphi_{s}/V_{T}} - \frac{\varphi_{s}}{V_{T}} - 1 \right) \right]^{1/2}$$

$$C_{so} = \frac{k_{s}\varepsilon_{0}}{L_{D}} \rightarrow \text{Flat-band capacitance}$$

(A) Accumulation regime:

$$\phi_s < 0 \rightarrow f(\phi_s) \propto \exp(-\phi_s / 2V_T)$$

$$dQ_N = 0, \ dQ_B = 0$$

$$\rightarrow C_{tot} \approx C_{ox}$$

The total gate capacitance is approximately equal to the oxide capacitance.

nanoHUB.org

Depletion Regime

online simulations and more

(B) Depletion regime:

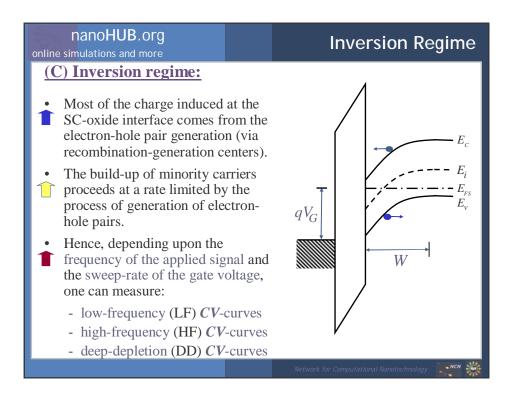
In depletion regime, the inversion charge is negligible when compared to the depletion charge. Hence:

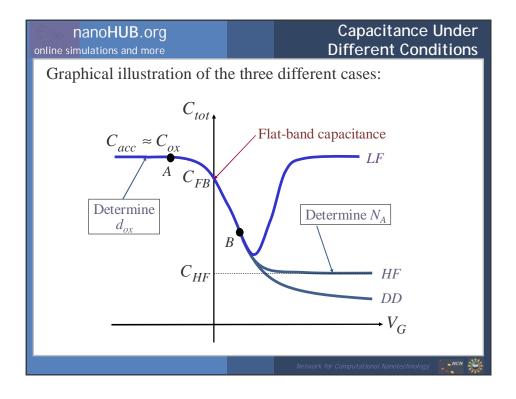
$$\begin{array}{c} 0 < \varphi_s < 2\varphi_F \rightarrow f(\varphi_s) \propto \sqrt{\varphi_s/V_T} \\ dQ_N = 0, \ dQ_P = 0 \end{array} \right\} \rightarrow C_s = \frac{Cso}{\sqrt{2\varphi_s/V_T}} = \sqrt{\frac{k_s \varepsilon_0 q N_A}{2\varphi_s}}$$

The total capacitance is, thus, given by:

$$C_{tot} = \frac{C_{ox}}{1 + \frac{C_{ox}}{C_s}} = \frac{C_{ox}}{1 + \frac{C_{ox}}{C_{depl}}} = \frac{k_{ox} \varepsilon_0}{d_{ox} + k_{ox} \varepsilon_0 \sqrt{\frac{2\varphi_s}{k_s \varepsilon_0 q N_A}}}$$

- Important remarks:
 - \rightarrow If N_A increases, then C_{tot} increases.
 - \rightarrow If d_{ox} increases, C_{tot} decreases.

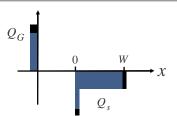




Low-Frequency CV-curve

• AC-frequency low and sweeprate low to allow for the generation of the inversion layer

ration of the inversion layer electrons and their response to the applied AC signal.



• Inversion layer and total gate capacitance:

$$\begin{aligned}
& \left\{ \begin{array}{l} \widehat{\varphi}_s > 2\varphi_F \to f(\varphi_s) \propto \exp(\varphi_s / 2V_T) \\
& dQ_P = 0 \end{aligned} \right\} \to C_s \approx C_{inv} \approx C_{so} \sqrt{\frac{n_{po}}{2p_{po}}} e^{\varphi_s / 2V_T}
\end{aligned}$$

$$C_{tot} = \frac{C_{ox}}{1 + C_{ox}/C_s} = \frac{C_{ox}}{1 + C_{ox}/C_{inv}} \approx C_{ox}$$

The total gate capacitance is approximately equal to the oxide capacitance.

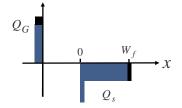
Network for Computational Nanotechnology

NCN 💥

nanoHUB.org

High-Frequency CV-Curve

*AC-frequency high, which prevents the response of the minority carriers. The sweep-rate is low, thus allowing for the generation of the inversion layer electrons.



• Depletion layer and total gate capacitance:

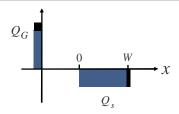
$$\phi_s \approx 2\phi_F \to f(\phi_s) = \sqrt{2\phi_F/V_T} \\ dQ_N = 0, \quad dQ_P = 0$$

$$\to C_s \approx C_{depl} \approx \sqrt{\frac{k_s \varepsilon_0 q N_A}{2(2\phi_F)}}$$

$$C_{tot} = \frac{C_{ox}}{1 + C_{ox}/C_{depl}} = \frac{C_{ox}}{1 + C_{ox}\sqrt{\frac{2(2\varphi_F)}{k_s \epsilon_0 q N_A}}} \approx const$$

Deep-Depletion CV-Curve

• AC-frequency high, which prevents the response of the minority carriers. The sweep-rate is also high, thus preventing the generation of the inversion layer electrons.



Depletion layer and total gate capacitance:

$$\begin{cases} f(\varphi_s) = \sqrt{\varphi_s/V_T} \\ dQ_N = 0, \ dQ_P = 0 \end{cases} \rightarrow C_s \approx C_{depl} \approx \sqrt{\frac{k_s \varepsilon_0 q N_A}{2\varphi_s}}$$

$$C_{tot} = \frac{C_{ox}}{1 + \frac{C_{ox}}{C_{depl}}} = \frac{C_{ox}}{1 + C_{ox} \sqrt{\frac{2\varphi_s}{k_s \varepsilon_0 q N_A}}}$$

nanoHUB.org

What is Low Frequency?

• The SCR generation current density equals to:

$$J_{SCR} = q n_i W / \tau_g$$

 $J_{SCR} = q n_i W / \tau_g$ While J_{SCR} flows in the semiconductor, the current flowing through the

$$J_D = C_{ox} dV / dt$$

• For the inversion charge to be able to respond, we must have that the SCR current must be able to supply the required displacement current, i.e.

$$C_{ox}dV/dt \le qn_iW/\tau_g \rightarrow dV/dt \le \frac{qn_iW}{C_{ox}\tau_g}$$

Example: d_{ox} =100 nm, W=1 μ m, C_{ox} =3.45×10⁻⁸ F/cm²:

 $\tau_e = 10 \,\mu s$, $dV/dt \le 0.65 \,V/s$, $f_{eff} = 45 \,Hz$ (not a severe constraint) $\tau_{o}=1 \text{ ms}, dV/dt \le 6.5 \text{ mV/s}, f_{eff}=0.4 \text{ Hz} \text{ (severe constraint)}$

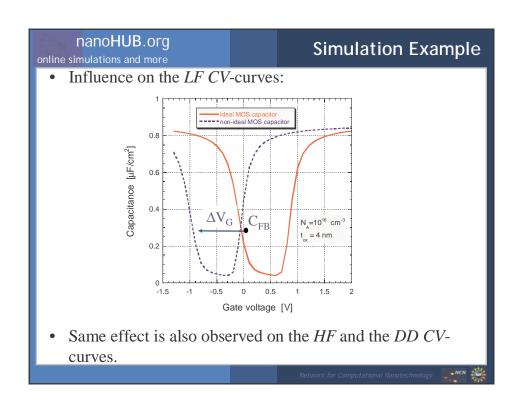
4. Deviations from the Ideal Model

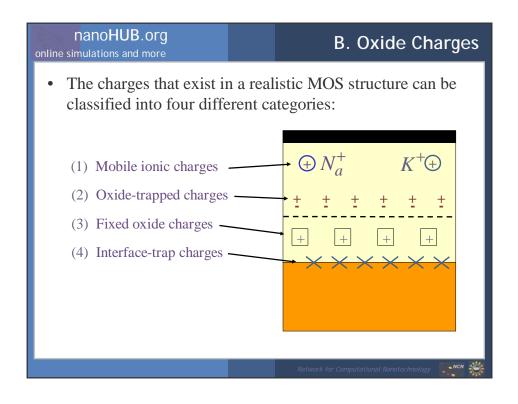
There are several factors that lead to deviation of the measured *CV*-curves from what the ideal model predictions are:

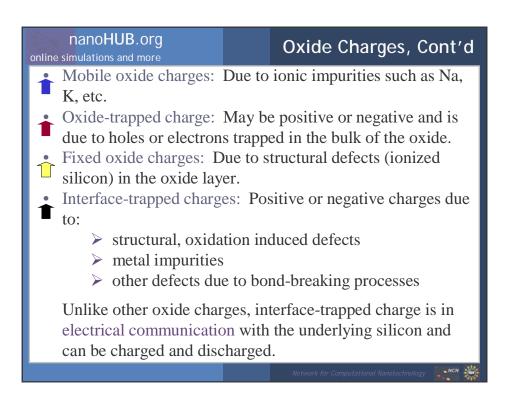
- Work-function difference
- Oxide charges (interface-trap, fixed-oxide, oxide-trap and mobile oxide charges)
- Depletion of the poly-silicon gates
- Quantum-mechanical space-quantization effects

Ideal MOS capacitor with a p-type semiconductor $\Phi_{M} = \chi_{sc} + \frac{E_{g}}{2} + q \Phi_{F}$ Real MOS capacitor with a p-type semiconductor $\Phi_{M} = \chi_{sc} + \frac{E_{g}}{2} + q \Phi_{F}$

nanoHUB.org online simulations and more The flat-band voltage V_{FB} equals the required gate voltage to achieve flat-band conditions. The workfunction difference modifies the relationship between the surface potential and the applied bias. This gives rise to threshold voltage shift between the ideal and real CV-curves: $\Delta V_G = V_G - V_G' = \frac{1}{q} \Phi_{MS} = \frac{1}{q} (\Phi_M - \Phi_{SC})$ Voltage applied to real MOS capacitor Voltage applied to ideal MOS capacitor







Oxide Charges, Cont'd

- The expression for the voltage drop across the oxide layer V_{ox} in the presence of a non-zero charge distribution $\rho(x)$ is found from the solution of the 1D Poisson equation, using the boundary conditions: $\varphi_{ox}(0)=0$ and $\varphi_{ox}(d_{ox})=V_{ox}$.
- The final result of this calculation is given below:

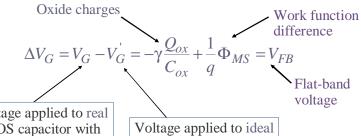
$$V_{ox} = d_{ox}F_{ox}(d_{ox}) - \gamma \frac{Q_{ox}}{C_{ox}}, \quad \gamma = \frac{1}{d_{ox}} \frac{\int_{0}^{d_{ox}} x \rho_{ox}(x) dx}{\int_{0}^{d_{ox}} \rho_{ox}(x) dx}$$

- Special cases:
 - **1** uniform charge distribution: $\gamma=1/2$
 - **2** Charges at the SC/oxide interface: $\gamma=1$
 - 3 Charges at the metal/oxide interface: $\gamma=0$

nanoHUB.org

Oxide Charges, Cont'd

The threshold voltage shift due to workfunction difference and charges in the oxide is given by:



Voltage applied to real MOS capacitor with oxide charges

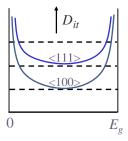
MOS capacitor

• Important note: All the charges (mobile ion charges, fixed oxide charges, oxide trapped charges) except the interfacetrap charges lead to rigid shift of the CV curve.

Interface-Trapped Charges

- More information on interface-trapped charges:
 - ➤ Most of the interface-trapped charges can be neutralized by low-temperature hydrogen annealing.
 - > The interface trap density is given by:

$$D_{it} = \frac{1}{q} \frac{dQ_{it}}{dE} \left(\frac{\text{\# of charges}}{cm^2 eV} \right)$$



- ➤ Interface trap charges can be:
 - acceptor-like (above the intrinsic level)
 - donor-like (below the intrinsic level)

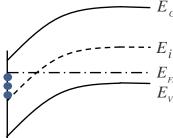
work for Computational Nanotechnology

nanoHUB.org

Interface-Trapped Charges, Cont'd

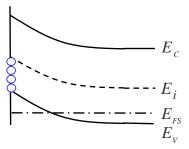
➤ Use simplified model that all of the states below the Fermi level are full and all of the states above the Fermi level are empty.

Depletion:

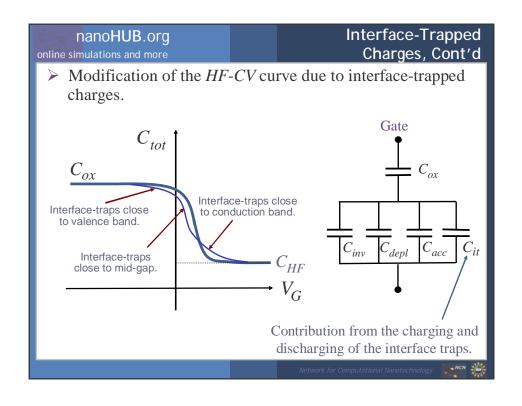


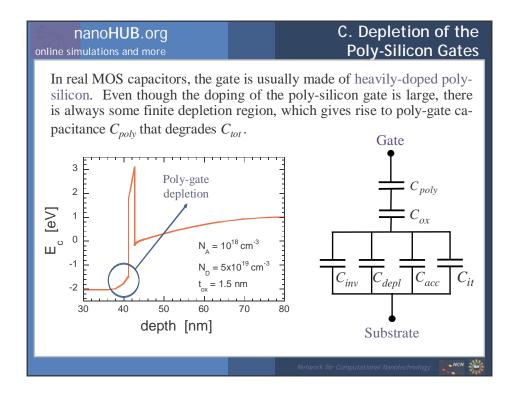
The excess negative charges lead to positive shift.

Accumulation:

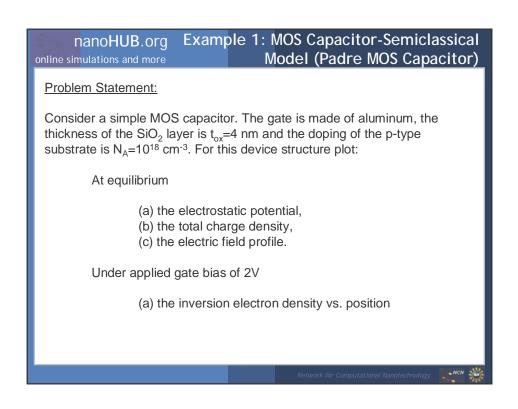


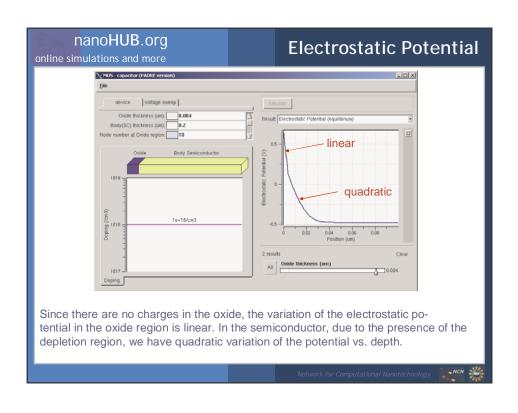
The excess positive charges lead to negative shift.

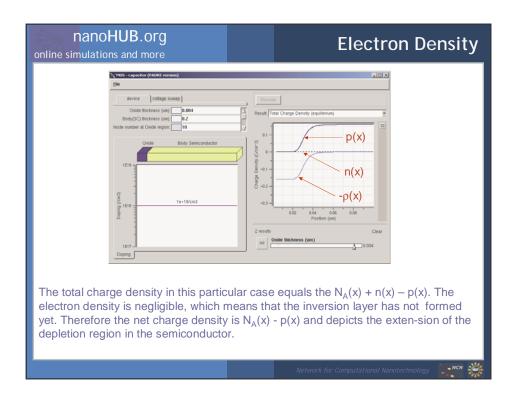


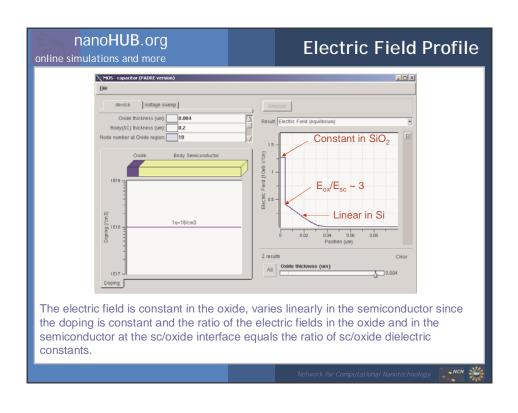


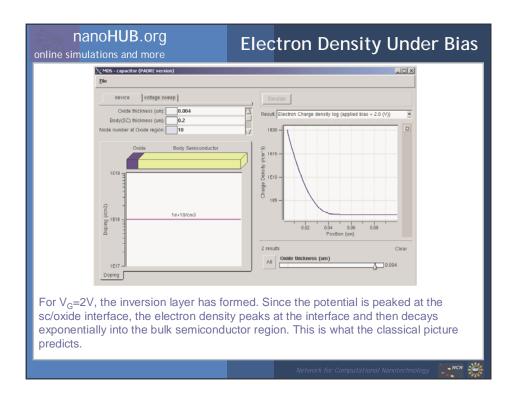












nanoHUB.org Example 2: Workfunction Difference, Doping Dependence (PADRE simulation)

Problem Statement:

Consider a MOS capacitor structure found in conventional MOSFET devices. The thickness of the oxide region equals 4 nm and the substrate is p-type with doping $N_{\rm A}$.

- (a) Assume that N_A=10¹⁷ cm⁻³. Plot the conduction band profile under equilibrium conditions assuming aluminum gate, n+-polysilicon and p+-polysilicon gate.
- (b) Vary the gate voltage from -2 to 2 V and calculate the high-frequency CV curves using f=1MHz. How does the change in the type of the gate electrode (aluminum vs. n+-polysilicon vs. p+-polysilicon) reflects on the HF CV-curves.
- (c) Assume aluminum gate and plot the HF CV-curves for f=1MHz. How does the change in substrate doping reflects itself on the HF CV-curves. Support your reasoning with a physical model. Assume that N_A =10¹⁶, 10¹⁷ and 10¹⁸ cm⁻³.

nanoHub.org
online simulations and more

Flectrostatic Potential

Flect

