

nanoHUB.org		Introc	luction	to Silvaco A	TLAS
1 2 3 4 5	Some general com Deckbuild overview ATLAS syntax (A) Structure speci (B) Materials mode (C) Numerical meth (D) Solution specif (E) Results analysi ATLAS Extract Examples (A) Diode example	fication els specifi hod selec ication s descript	cation tion		
					secondar distan
					NCN

nanoHUB.org	(B) Mater	ials Models Specification
 CONTACT statement NAME → spect WORKFUNCTION type → specific FLOAT CONTACT IMPE (used specification) Schottky barrie contact 	ifies the name of)N → specifies N.POLYS es the type of a c TING EDANCE → use for dis r → BARRIER (t ALPHA (spect t name=gate w t name=drain c t name=drain r capacitance=;	the contact: GATE, DRAIN, ANODE workfunction of a metal, or if specifies SILICON, then it implicitly assumes one contact: CURRENT, VOLTAGE, es RESISTANCE, CAPACITANCE, INDUCTANCE, CON.RESISTANCE stributed contact resistance surns on barrier lowering mechanism), ecification of the barrier lowering) vorkfunction=4.8 h.polysilicon current resistance=40.0 \ 20.E-12 inductance=1.E-6
		Network for Computational Nanotechnology

nanoHUB.org					
online simulations and more					
MODELS and IMPACT statements					
The physical models that are s statements include:	The physical models that are specified with the MODELS and IMPACT statements include:				
mobility model → CONMOE recombination models → S carrier statistics → BOLTZM	mobility model → CONMOB, ANALYTIC, ARORA, FLDMOB, TASCH, etc. recombination models → SRH, CONSRH, AUGER, OPTR carrier statistics → BOLTZMANN, FERMI, INCOMPLETE, IONIZ, BGN				
tunneling model → FNORD BBT.K HHI (h	tunneling model → FNORD, BBT.STD (band to band - direct transitions), BBT.KL (direct and indirect transitions), HEI and HHI (hot electron and hot hole injection)				
models conmob fldmob srh fermidirac impact selb					
Additional important parameters that can be specified within the MODELS statement include:					
NUMCARR → specifies number of carriers, and is followed by a carrier type specification (ELECTRONS or HOLES or both) MOS, BIPOLAR → standard models used for MOSFET and BIPOLARs					
models MOS numcarr=1 holes models BIP print					
		Notwork for Computational Nanotochnology			

r online sin	nanoHUB.org				
3	Solution files:				
	TonyPlot is:				
	save outfile= <file_name> solve outfile=<file_name>.sta master [onefileonly]</file_name></file_name>				
4	Invoking TonyPlot				
	To create overlayed plots with TonyPlot, one needs to use the following ommand:				
	tonyplot -overlay file1.log file2.log				
	➔ To load structure files, containing mesh, doping profile information, etc., one can use the following statement:				
	tonyplot file.str -set mx.set iv.data				
	This command allows loading of the file called " <i>file.str</i> " and sets its display to a previous setup stored in the " <i>mx.set</i> " file, and then loads the file containing the <i>IV</i> -data.				
	Network for Computational Nanotechnology				

nanoHUB.org online simulations and more		Diode Exa	mple
go atlas # MESH SPECIFICATION PART mesh space.mult=1.0 # x.mesh loc=0.00 spac=0.5 x.mesh loc=3.00 spac=0.2 x.mesh loc=5.00 spac=0.25 x.mesh loc=7.00 spac=0.25 x.mesh loc=12.00 spac=0.2 x.mesh loc=12.00 spac=0.1 y.mesh loc=1.00 spac=0.1 y.mesh loc=2.00 spac=0.1 y.mesh loc=5.00 spac=0.4 # REGIONS AND ELECTRODE region num=1 silicon electr name=anode x.min=5 electr name=cathode bot	S SPECIF	FICATION	
		Network for Computational Nanotechnology	NCN

