

nanoHUB.org

online simulations and more

• Recall the expressions for the threshold voltage for real MOS capacitor:

Gate voltage :
$$V_T = 2\varphi_F + \frac{1}{C_{ox}}\sqrt{2qN_Ak_s\varepsilon_0(2\varphi_F)} + V_{FB}$$

Flat-band voltage : $V_{FB} = \frac{1}{q}\varphi_{MS} + \frac{Q_{it}}{C_{ox}} + \frac{Q_f}{C_{ox}} + \gamma_{ot}\frac{Q_{ot}}{C_{ox}} + \gamma_m\frac{Q_m}{C_{ox}}$

• Beyond the point that determines the onset of strong inversion ($\phi_s = 2\phi_F$), any excess charge on the gate balanced with excess charge in the semiconductor, is given by:

$$Q_G = -(Q_B + Q_N) = C_{tot}(V_G - V_T) \rightarrow Q_N \approx -C_{ox}(V_G - V_T) - Q_B$$
$$Q_B = Q_B(\varphi_S) - Q_B(2\varphi_F)$$

- Based on how we consider Q_B , we have:
 - (A) Square-law theory: $Q_B = 0$
 - (B) Bulk-charge theory: $Q_B \neq 0$

nanoHUB.org

online simulations and more

• Integrating the current density, we obtain drain current I_D :

nanoHUB.org **Mobility Modeling** online simulations and more Mobility modeling is normally divided into: · Low-field mobility models (bulk materials and inversion layers) · High-field mobility models Bulk mobility: 1. Characterization of μ_0 as a function of doping and lattice scattering 2. Characterization of v_{sat} as a function of lattice temperature 3. Describing the transition between the low-field and the saturation velocity region Inversion layers: 1. Characterization of surface-roughness scattering 2. Description of the carrier-carrier scattering 3. Quantum-mechanical size-quantization effect

online simulations and more		Mobility Modeling,
 Sharfetter-Gummel mo phonon scattering + ion expression – does not u Arora model: similar to Caughey and phonon scattering Carrier-carrier scattering modified Dorkel and Let 	odel: ized imp use the M Thomas,	urity scattering (parameterized lathiessen's rule) , but with temperature dependent odel
 Modified Dorker and Letting model Neutral impurity scattering: Li and Thurber model: mobility component due to neutral impurity scattering is combined with the mobility due to lattice, ionized impurity and carrier-carrier scattering via the Mathiessen's rule 		
		Network for Computational Nanotechnology

nanoHUB.org online simulations and more	Mobility Modeling,	
(C) Inversion layer mobility models		
 - CVT model: combines acoustic phonon, non-polar optical phonon and surface- roughness scattering (as an inverse square dependence of the perpendicular electric field) via Mathiessen's rule 		
 Yamaguchi model: low-field part combines lattice, ionized impurity and surface-roughness scattering there is also a parametric dependence on the in-plane field (high-field component) 		
 Shirahata model: uses Klaassen's low-field mobility model takes into account screening effects into the inversion layer has improved perpendicular field dependence for thin gate oxides 		
 Tasch model: the best model for modeling the mobility in MOS inversion layers; uses universal mobility behavior 		
	Network for Computational Nanotechnology	