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Gummel's Iteration Method 

Gummel's method solves the coupled set of semiconductor equations together with the 

Poisson equation via a decoupled procedure. If we choose the quasi-Fermi level formulation, we 

solve first a nonlinear Poisson's equation. The potential obtained from this solution is substituted 

into the continuity equations, which are now linear, and are solved directly to conclude the 

iteration step. The result in terms of quasi-Fermi levels is then substituted back into Poisson's 

equation and the process repeated until convergence is reached. In order to check for 

convergence, one can calculate the residuals obtained by positioning all the terms to the left hand 

side of the equations and substituting the variables with the iteration values. For the exact 

solution the residuals should be zero. Convergence is assumed when the residuals are smaller 

than a set tolerance. The rate of convergence of the Gummel method is faster when there is little 

coupling between the different equations. The computational cost of one Gummel iteration is one 

matrix solution for each carrier type plus one iterative solution for the linearization of Poisson's 

equation. Note that in conditions of equilibrium (zero bias) only the solution of Poisson's 

equation is necessary, since the equilibrium Fermi level is constant and coincides with both 

quasi-Fermi levels.  

We give some examples of the quasi-linearization of Poisson equation, as necessary 

when Gummel's method is implemented. Let us consider the 1-D case in equilibrium first. As 

mentioned earlier, one has to solve only Poisson's equation, since the current is zero and the 

exact expressions for the carrier concentrations are known. In the non-degenerate case, the 

explicit expressions for the electron and hole densities are substituted into Poisson's equation to 

give  
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which is sometimes referred to as the non-linear Poisson equation due to the nonlinear terms 

involving V on the RHS. In equilibrium, the quasi-Fermi energies are equal and spatially 

invariant, hence we may choose the Fermi energy as the reference energy, i.e. 
0n pφ φ= =

. 



Furthermore, the equation may be scaled by using the (minimum) extrinsic Debye length for the 

space coordinate x, and the thermal voltage /Bk T q  for the potential V. Writing V  and x  for the 

normalized potential and space coordinates, we obtain  
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The equilibrium non-linear Poisson equation can be solved with the following quasi-linearization 

procedure  

1. Choose an initial guess for the potential V .  

2. Write the potential at the next iteration step as newV V Vδ= + , and substitute into Eq. (2) 

to solve for newV  to give  
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3. Use the linearization ( )exp 1V Vδ δ± ≈ +
and discretize the resultant equation. This 

equation has a tridiagonal matrix form and is readily solved for ( )V iδ .  
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4. Check for convergence. The residual of Eq. (4) is calculated and convergence is achieved 

if the norm of the residual is smaller than a preset tolerance. If convergence is not 

achieved, return to step 2. In practice one might simply check the norm of the error  
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Note that for the solution of the nonlinear Poisson's equation, the boundary conditions are 

referenced to the equilibrium Fermi level. One may use the separation between the Fermi level 

and the intrinsic Fermi level at the contacts for the boundary conditions.  

After the solution in equilibrium is obtained, the applied voltage is increased gradually in 

steps /BV k T q∆ ≤  to avoid numerical instability. The scaled nonlinear Poisson equation under 

nonequilibrium conditions now becomes  
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where the quasi-Fermi levels are also normalized. Assuming Einstein's relations still hold, the 

current density equation may be re-written as  
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which may be written more compactly, including quasi-Fermi level normalization, as  
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A similar formula is obtained for the holes  
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and the continuity equations are therefore given by  
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The continuity equations may be discretized with a straightforward finite difference approach 

(here for simplicity with uniform mesh)  
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where the Slotboom variables have been used for simplicity of notation. Note that the inner 

derivative has been discretized with centered differences around the points 
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interleaved mesh. Variables on the interleaved mesh must be determined very carefully, using 

consistent interpolation schemes for potential and carrier density, as discussed later. The 

discretized continuity equations lead to the tridiagonal system  
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The decoupled iteration now solves Poisson's equation, initially with a guess for the quasi-Fermi 

levels. The voltage distribution obtained for the previous voltage considered is normally a good 

initial guess for the potential. Since the quasi-Fermi levels are inputs for Poisson's equation, the 

quasi-linearization procedure for equilibrium can be used again. The potential is then used to 

update the ( )na i  and 
( )pa i

, and Eqs. (13) and (14) are solved to provide new quasi-Fermi level 

values for Poisson's equation, and the process is repeated until convergence is reached. The 



generation-recombination term depends on the electron and hole concentrations, therefore it has 

to be updated at each iteration. It is possible to update the generation-recombination term also 

intermediately, using the result for the electron concentration.  

The examples given bellow illustrates the Gummel's approach that is limited to the 

nondegenerate case. If field dependent mobility and diffusion coefficients are introduced, 

minimal changes should be necessary, as long as it is still justified the use of Einstein's relations. 

Extension to nonuniform mesh is left as an exercise for the reader. In the 2-D case, the quasi-

linearized Poisson's equation becomes  
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The normalized mesh size is h x y= ∆ = ∆ . As before, the thermal voltage Bk T q  has been used 

to normalize the potential V and the quasi-Fermi levels nφ  and pφ
 included in the Slotboom 

variables 
( ), ,expn p n pφΦ = ±

.  

The continuity equations with the form ( )( , ) ( , )a x y U x y∇ ⋅ ∇Φ = ±
 are discretized as  
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Newton's Method 

Newton's method is a coupled procedure which solves the equations simultaneously, 

through a generalization of the Newton-Raphson method for determining the roots of an equation. 

We rewrite Eqs. (6,10,11) in the residual form  
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Starting from an initial guess oV , on , and op , the corrections V, n∆ , and p∆ are calculated from 

the Jacobian system  
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which is obtained by Taylor expansion. The solutions are then updated according to the scheme  
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where k indicates the iteration number. In practice, a relaxation approach is also applied to avoid 

excessive variations of the solutions at each iteration step.  

The system (18) has 3 equations for each mesh point on the grid. This indicates the main 

disadvantage of a full Newton iteration, related to the computational cost of matrix inversion 

(one may estimate that a 3 3N N×  matrix takes typically 20 times longer to invert than an 

analogous N N×  matrix). On the other hand convergence is usually fast for the Newton method, 

provided that the initial condition is reasonably close to the solution, and is in the neighborhood 

where the solution is unique. There are several viable approaches to alleviate the computational 

requirements of the Newton's method. In the Newton-Richardson approach, the Jacobian matrix 

is updated only when the norm of the error does not decrease according to a preset criterion. In 

general, the Jacobian matrix is not symmetric positive definite, and fairly expensive solvers are 

necessary. Iterative schemes have been proposed to solve each step of Newton's method by 

reformulating Eq. (18) as  
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Since the matrix on the left hand side is lower triangular, one may solve Eq. (20) by decoupling 

into three systems of equations solved in sequence. First, one solves the block of equations 

(again, one for each grid point)  
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and the result is used in the next block of equations  
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Similarly, for the third block  
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The procedure achieves a decoupling of the equations as in a block Gauss-Seidel iteration, and 

can be intended as a generalization of the Gummel method. A block-SOR method is obtained if 

the left hand sides are premultiplied by a relaxation parameter. This iteration procedure has 

better performance if the actual variables are 
( , , )n pV φ φ

.  

In general, Gummel's method is preferred at low bias because of its faster convergence 

and low cost per iteration. At medium and high bias the Newton's method becomes more 

convenient, since the convergence rate of Gummel's method becomes worse as the coupling 

between equations becomes stronger at higher bias. But since Gummel's method has a fast initial 

error reduction, it is often convenient to couple the two procedures, using Newton's method after 



several Gummel's iterations. Remember that it is very important for the Newton's iteration to 

start as close as possible to the true solution. Close to convergence, the residual in Newton's 

iteration should decrease quadratically from one iteration to the other.  

Generation and Recombination 

The Shockley-Reed-Hall model is very often used for the generation-recombination term 

due to trap levels  
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where tE  is the trap energy level involved and nτ  and pτ
 are the electron and hole lifetimes. 

Surface rates may be included with a similar formula, in which the lifetimes are substituted by 

,
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 is the surface recombination velocity.  

The Auger recombination may be accounted for by using the formula  
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where nC  and pC
 are appropriate constants. The Auger effect is for instance very relevant in the 

modeling of highly doped emitter regions in bipolar transistors.  

The generation process due to impact ionization can be included using the field-

dependent rate 
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