

nanoHUB.org
online simulations and more• Photogeneration-radiative recombination \rightarrow mathematical
description• Both types of carriers are involved in the process:
 $r = Bpn, g = Bp_0n_0 = Bn_i^2$
 $R = r - g = B(pn - n_i^2) \rightarrow p = p_0 + \Delta p, n = n_0 + \Delta n$
 $R = B \cdot \Delta n(p_0 + n_0 + \Delta n)$
 $\begin{cases} B(GaAs) = (1.3 \pm 0.3) \times 10^{-10} cm^3 / s$
 $B(Si) = 2 \times 10^{-15} cm^3 / s$ • Limiting cases:
(a) Low-level injection: $\Delta n, n_0 \ll p_0 \rightarrow \tau_{rad} = \frac{\Delta n}{R} \approx \frac{1}{B\Delta n}$ (b) High-level injection: $\Delta n \gg n_0, p_0 \rightarrow \tau_{rad} = \frac{\Delta n}{R} \approx \frac{1}{B\Delta n}$

nanoHUB.org online simulations and more		(3) Impact Ionization							
- Auger Coefficients:	т [К]	C _n [cm ⁶ /s]	C _p [cm ⁶ /s]						
(Silvaco)	77	2.3x10 ⁻³¹	7.8x10 ⁻³²						
	300	2.8x10 ⁻³¹	9.9x10 ⁻³²						
	400	2.8x10 ⁻³¹	1.2x10 ⁻³¹						
(3) Impact ionization: Diagramatic description → identical to Auger generation									
$G_{impact} = \frac{1}{q} \left[\alpha_n \mathbf{J}_n + \alpha_p \mathbf{J}_p \right]$									
lonization rates => generated electron hole- pairs per unit length of travel per carrier									
		Network for Compute	ational Nanotechnology	NCN					

nanoHUB.org

- Thermal equilibrium conditions:

$$dn/dt = 0, \ dp/dt = 0$$

$$\downarrow$$

$$\begin{cases} c_n np_T = e_n n_T \\ e_p p_T = c_p p n_T \end{cases} \Rightarrow \begin{cases} e_n = c_n n_1 \\ e_p = c_p p_1 \end{cases}$$

 $n_{\rm 1}$ and $p_{\rm 1}$ are the electron and hole densities when $E_{\rm F}{=}E_{\rm T}$

- Steady-state conditions:

$$\begin{cases} R_n = R_{nc} - R_{ne} = c_n np_T - e_n n_T = c_n (np_T - n_1 n_T) \\ R_p = R_{pc} - R_{pe} = c_p pn_T - e_p p_T = c_p (pn_T - p_1 p_T) \\ \downarrow \\ f_T = \frac{c_n n + c_p p_1}{c_n (n + n_1) + c_p (p + p_1)} \rightarrow R = \frac{np - n_i^2}{\frac{1}{c_p N_T} (n + n_1) + \frac{1}{c_n N_T} (p + p_1)} \end{cases}$$

n online simi	anoHUB.(ulations and n	Drg nore							
- Define carrier lifetimes:									
$\tau_p = \frac{1}{c_p N_T} = \frac{1}{\sigma_p v_{th} N_T}, \ \tau_n = \frac{1}{c_n N_T} = \frac{1}{\sigma_n v_{th} N_T}$									
- Empirical expressions for electron and hole lifetimes:									
$\tau_{n} = \frac{\tau_{n}^{0}}{1 + \frac{N_{A} + N_{D}}{N_{n}^{ref}}}, \tau_{p} = \frac{\tau_{p}^{0}}{1 + \frac{N_{A} + N_{D}}{N_{p}^{ref}}}$									
	τ _{n0} [s]	N_n^{ref} [cm ⁻³]	τ _{p0} [s]	N_p^{ref} [cm ⁻³]	Source				
	5x10 ⁻⁵	5x10 ¹⁶	5x10 ⁻⁵	5x10 ¹⁶	D'Avanzo				
	3.94x10 ⁻⁴	7.1x10 ¹⁵	3.94x10 ⁻⁴	7.1x10 ¹⁵	Dhanasekaran				
Network for Computational Nanotechnology									

Particulations and more online simulations and more - Limiting cases: $\tau_{SRH} = \frac{\Delta n}{R} = \frac{\tau_p (n_0 + \Delta n + n_1) + \tau_n (p_0 + \Delta n + p_1)}{n_0 + p_0 + \Delta n}$ (a) Low level injection (*p*-type sample): $\tau_{SRH} = \frac{\Delta n}{R} = \tau_n$ (b) High-level injection: $\tau_{SRH} = \frac{\Delta n}{R} = \tau_n + \tau_p$ - Generation process ($p \cong n \cong 0$): $R = \frac{-n_i^2}{\tau_p n_1 + \tau_n p_1} = -G \rightarrow G = \frac{n_i}{\tau_g}$ $\tau_g = \text{generation rate} \Rightarrow \tau_g = \tau_p e^{\alpha} + \tau_n e^{-\alpha}, \quad \alpha = \frac{E_T - E_i}{k_B T}$