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Solution of the Coupled DD Equations

There are two schemes that are used in solving the coupled 
set of equations which comprises the Drift-Diffusion model:

Gummel’s method

Newton’s method
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(A) Gummel’s Relaxation Method

Gummel’s relaxation method, which solves the equations 
with the decoupled procedure, is used in the case of weak 
coupling:

• Low current densities (leakage currents, subthreshold
regime), where the concentration dependent diffusion term 
in the current continuity equation is dominant

• The electric field strength is lower than the avalanche 
threshold, so that the generation term is independent of 
∇ V

• The mobility is nearly independent of E

The computational cost of the Gummel’s iteration is one 
matrix solution for each carrier type plus one iterative 
solution for the linearization of the Poisson Equation

Gummel’s Method
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The solution strategy when using Gummel’s relaxation 
scheme is the following one:

• Find the equilibrium solution of the linearized Poisson 
equation 

• After the solution in equilibrium is obtained, the applied 
voltage is increased in steps ∆V≤ VT

• Now the scaled Poisson equation becomes:
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The 1D discretized electron current continuity equation (as 
long as Einstein’s relations are valid) is:

For holes, one can obtain analogous equations by 
substituting:
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The decoupled iteration scheme goes as follows:
(1) Solve the Poisson equation with a guess for the quasi-

Fermi levels (use the applied voltage as initial guess)
(2) The potential is used to update the Bernouli functions
(3) The above equations are solved to provide an update for 

the quasi-Fermi levels, that enter into the Poisson 
equation

Gummel’s Method, Cont’d
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The criterion for convergence is:

In the case of strong coupling, one can use the extended 
Gummel’s scheme
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initial guess
of the solution

solve
Poisson’s eq.

Solve electron eq.
Solve hole eq.

n
converged?

converged?
n
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initial guess
of the solution

Solve Poisson’s eq.
Electron eq.

Hole eq.

Update
generation rate
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Original Gummel’s scheme Modified Gummel’s scheme

Gummel’s Method, Cont’d
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(B) Newton’s method

• The three equations that constitute the DD model, written 
in residual form are:

• Starting from an initial guess, the corrections are 
calculated by solving:
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• The method can be simplified by the following iterative 
scheme:
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Carrier Action

• Drift process
• Diffusion process
• Generation-recombination mechanisms
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Drift process:

• Under low-field conditions, the carrier drift velocity is 
proportional to the electric field:

vdn=-µnF (for electrons) and vdp=µpF (for holes) 

• These expressions can be obtained from the second law of 
motion. For example, for an electron moving in an electric 
field, one has:

• Low frequency limit:
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• The linear dependence of v on F does not hold at high 
fields when electrons gain considerable energy from the 
electric field, in which case one has:

• Description of the momentum relaxation time τm and energy 
relaxation time τE:
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t=0 t= τm

(τm=10-14-10-12 s)
t= τE

(τE=10-13-10-11 s)

Drift Process, …



7

nanoHUB.org
online simulations and more

Network for Computational Nanotechnology

• Drift velocity for GaAs and Si:
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• Small devices => non-stationary transport

velocity overshoot => faster devices (smaller transit time)
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Carrier Mobility:
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Carrier Mobility (Cont’d):
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Diffusion process:

+

p(x)
pqD pp ∇−=J

-

n(x)
nqDnn ∇=J

• Dn, Dp Diffusion constants for electrons and 
holes

• Total current equals the sum of the drift and diffusion 
components:
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Einstein relations (derivation):

Assumptions:
• equilibrium conditions
• non-degenerate semiconductor
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Generation-Recombination Mechanisms:
Photons and phonons (review)

• Photons quantum of energy in an electromagnetic wave

• Phonons quantum of energy in an elastic wave
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Notation:
g generation rate
r recombination rate
R = r - g net recombination rate

Importance:

BJTs R plays a crucial role in the operation of 
the device
Unipolar devices (MOSFET’s, MESFETs, 
Schottky diodes No influence except when 
investigating high-field and breakdown 
phenomena

Generation-Recombination 
Mechanisms, …
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Two
particle

One step
(Direct)

Two-step
(indirect)

Energy-level

consideration

• Photogeneration
• Radiative recombination
• Direct thermal generation
• Direct thermal recomb.

• Shockley-Read-Hall 
(SRH) generation-
recombination

• Surface generation-
recombination

Three
particle

Impact
ionization

Auger

• Electron emission
• Hole emission
• Electron capture
• Hole capture

Pure generation process

Classification
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Diagramatic description:

Ec
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Light
E=hf

Ec

Ev

Light

Ec

Ev

heat
Ec

Ev

heat

x

Photo-
generation

Radiative
recombination

Direct thermal 
generation

Direct thermal 
recombination

Not the usual means by which
the carriers are generated or

recombine

Important for:
• narrow-gap semiconductors
• direct band-gap SCs used for 

fabricating LEDs for optical 
communications

(1) Direct Processes
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• Photogeneration band-diagramatic description:

Momentum and energy conservation:

E
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Near the absorption edge, the absorption coefficient can be 
expressed as:

hf = photon energy
Eg = bandgap

γ = constant
γ = 1/2 and 1/3 for allowed direct transitions and 

forbidden direct transitions
γ = 2 for indirect transitions where phonons

are involved

( )γ−∝α gEhf
Light

intensity

Distance
1/α

light-penetration depth
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• Photogeneration-radiative recombination mathematical 
description

- Both types of carriers are involved in the process:

- Limiting cases:

(a) Low-level injection:

(b) High-level injection:
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Diagramatic description:

Ec

Ev

Ec

Ev

Ec

Ev

Ec

Ev

Electron
capture

Hole
capture

Electron
emission

Hole
emission

Recombination process
(carriers near the band edges involved)

Generation process
(energetic carriers involved)

• Auger generation takes place in regions with high concent-
ration of mobile carriers with negligible current flow

• Impact ionization requires non-negligible current flow

(2) Auger Process
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• Auger process mathematical description

- Three carriers are involved in the process

- Limiting cases (p-type sample):

(a) Low-level injection:

(b) High-level injection:
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- Auger Coefficients:
(Silvaco)

T  [K] Cn  [cm6/s] Cp  [cm6/s]

77 2.3x10-31 7.8x10-32

300 2.8x10-31 9.9x10-32

400 2.8x10-31 1.2x10-31

(3) Impact ionization:
Diagramatic description identical to Auger generation

[ ]ppnnimpact q
G JJ α+α= 1

Ionization rates => generated electron hole-
pairs per unit length of travel per carrier

(3) Impact Ionization
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- Ionization rates dependence upon the electric field  
component parallel to the current flow:
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Diagramatic description:

Mathematical model:
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(4) Shockley-Read-Hall Mechanism
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- Thermal equilibrium conditions:

- Steady-state conditions:
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- Define carrier lifetimes:

- Empirical expressions for electron and hole lifetimes:
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3.94x10-4 7.1x1015 3.94x10-4 7.1x1015 Dhanasekaran
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- Limiting cases:

(a) Low level injection (p-type sample):

(b) High-level injection:

- Generation process (p≅ n ≅ 0):
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