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The popular drift-diffusion current equations can be easily derived from the Boltzmann 

transport equation by considering moments of the BTE. Consider steady state conditions and, for 

simplicity, a 1-D geometry. With the use of a relaxation time approximation, the Boltzmann 

transport equation may be written [1] 
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In writing Eq. (3.1) parabolic bands have been assumed for simplicity, and the charge e has to be 

taken with the proper sign of the particle (positive for holes and negative for electrons). The 

general definition of current density is repeated here for completeness 
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where the integral on the right hand side represents the first ‘moment’ of the distribution function. 

This definition of current can be related to Eq. (3.1) after multiplying both sides of (3.1) by v and 

integrating over v. From the RHS of Eq. (3.1) we get  
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The equilibrium distribution function is symmetric in v, and hence the first integral is zero. 

Therefore, we have 
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Integrating by parts we have  
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and we can write  
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where 
2v

 is the average of the square of the velocity. The drift-diffusion equations are derived 

introducing the mobility *

e

m

τµ =
 and replacing 

2v
 with its average equilibrium value *

Bk T

m  for 

a 1D case and 
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m  for a 3D case, therefore neglecting thermal effects. The diffusion coefficient 

D is also introduced, and the resulting drift-diffusion current expressions for electrons and holes 

are 
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respectively, where q is used to indicate the absolute value of the electronic charge. Although no 

direct assumptions on the non-equilibrium distribution function, f(v,x), were made in the 

derivation of Eqs. (3.7), in effect, the choice of equilibrium (thermal) velocity means that the 

drift-diffusion equations are only valid for small perturbations of the equilibrium state (low 

fields). The validity of the drift-diffusion equations is empirically extended by introducing field-

dependent mobility ( )Eµ and diffusion coefficient D(E), obtained from empirical models or 

detailed calculation to capture effects such as velocity saturation at high electric fields due to hot 

carrier effects.   

Physical Limitations on Numerical Drift-Diffusion Schemes 

The complete drift-diffusion model is based on the following set of equations in 1D:  

1. Current equations  
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2. Continuity equations  
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3. Poisson's equation  

( )D AV p n N Nε + −∇ ⋅ ∇ = − − + −
 (0.10) 

where Un and Up are the net generation-recombination rates.  

The continuity equations are the conservation laws for the charge carriers, which may be 

easily derived taking the zeroth moment of the time dependent BTE. A numerical scheme which 

solves the continuity equations should  

1. Conserve the total charge inside the device, as well as that entering and leaving.  

2. Respect the local positive definite nature of carrier density. Negative density is 

unphysical.  

3. Respect monotonicity of the solution (i.e. it should not introduce spurious space 

oscillations).  

Conservative schemes are usually achieved by subdivision of the computational domain into 

patches (boxes) surrounding the mesh points. The currents are then defined on the boundaries of 

these elements, thus enforcing conservation (the current exiting one element side is exactly equal 

to the current entering the neighboring element through the side in common). For example, on a 

uniform 2-D grid with mesh size ∆ , the electron continuity equation may be discretized in an 

explicit form as follows  [2] 
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In Eq. (3.11), the indices i,j describe spatial discretization, k corresponds to the time progression, 

and the superscripts x and y denote the x- and y-coordinate of the current density vector. This 

simple approach has certain practical limitations, but is sufficient to illustrate the idea behind the 

conservative scheme. With the present convention for positive and negative components, it is 

easy to see that in the absence of generation-recombination terms, the only contributions to the 

overall device current arise from the contacts. Remember that, since electrons have negative 

charge, the particle flux is opposite to the current flux. The actual determination of the current 

densities appearing in Eq. (3.11) will be discussed later. When the equations are discretized, 

using finite differences for instance, there are limitations on the choice of mesh size and time 

step [3]:  

1. The mesh size x∆  is limited by the Debye length.  

2. The time step is limited by the dielectric relaxation time.  

A mesh size must be smaller than the Debye length where one has to resolve charge variations in 

space. A simple example is the carrier redistribution at an interface between two regions with 

different doping levels. Carriers diffuse into the lower doped region creating excess carrier 

distribution which at equilibrium decays in space down to the bulk concentration with 

approximately exponential behavior. The spatial decay constant is the Debye length  
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where N is the doping density. In GaAs and Si, at room temperature the Debye length is 

approximately 400 Å when  
16 310N cm−≈ and decreases to about only 50 Å when 

18 310N cm−≈ . 

The dielectric relaxation time is the characteristic time for charge fluctuations to decay 

under the influence of the field that they produce. The dielectric relaxation time may be 

estimated using  
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To see the importance of respecting the limitations related to the dielectric relaxation time, 

imagine we have a spatial fluctuation of the carrier concentration, which relaxes to equilibrium 

according to the rate equation  
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A finite difference discretization of this equation gives at the first time step  
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Clearly, if drt t∆ > , the value of ( )n t∆ ∆  is negative, which means that the actual concentration is 

evaluated to be less than the equilibrium value, and it is easy to see that the solution at higher 

time steps will decay oscillating between positive and negative values of n∆ . An excessively 

large t∆  may lead, therefore, to nonphysical results. In the case of high mobility, the dielectric 

relaxation time can be very small. For instance, a sample of GaAs with a mobility of 

26000 /cm V s−  and doping 
18 310 cm−

 has approximately 
1510drt s−≈ , and in a simulation the 

time step t∆  should be chosen to be considerably smaller.  

Steady State Solution of Bipolar Semiconductor Equations 

The general semiconductor equations for electrons and holes may be rewritten in 3D as  
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with B A DN N N= − . We note that the above equations are valid in the limit of small deviations 

from equilibrium, since the Einstein relations have been used for the diffusion coefficient, 

normally valid for low fields or large devices. The generation-recombination term U will be in 

general a function of the local electron and hole concentrations, according to possible different 

physical mechanisms, to be examined later in more detail. We will consider from now on steady 

state, with the time dependent derivatives set to zero.  

These semiconductor equations constitute a coupled nonlinear set. It is not possible, in 

general, to obtain a solution directly in one step, rather a nonlinear iteration method is required. 

The two more popular methods for solving the discretized equations are the Gummel's iteration 

method [4] and the Newton's method [5]. It is very difficult to determine an optimum strategy for 

the solution, since this will depend on a number of details related to the particular device under 

study. There are in general three possible choices of variables.  

1. Natural variable formulation (V,n,p)  

2. Quasi-Fermi level formulation 
( , , )n pV φ φ

, where the quasi-Fermi levels derive from the 

following definition of carrier concentration out of equilibrium (for non-degenerate case)  
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3. Slotboom formulation ( ), ,n pV Φ Φ
 where the Slotboom [6] variables are defined as  
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The Slotboom variables are, therefore, related to the carrier density expressions, and the 

extension to degenerate conditions is cumbersome.  



Normally, there is a preference for the quasi-Fermi level formulation in steady state simulation, 

and for the natural variables n and p in transient simulation.  

Normalization and Scaling 

For the sake of clarity, all formulae have been presented without the use of simplifications or 

normalization. It is however common practice to perform the actual calculation using normalized 

units to make the algorithms more efficient, and in cases to avoid numerical overflow and 

underflow. It is advisable to input the data in M.K.S. or practical units (the use of centimeters is 

for instance very common in semiconductor practice, instead of meters) and then provide a 

conversion block before and after the computation blocks to normalize and denormalize the 

variables. It is advisable to use consistent scaling, rather than set certain constants to arbitrary 

values. The most common scaling factors for normalization of semiconductor equations are 

listed in Table 0-1 [7].  

Table 0-1. Scaling factors 
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