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Representation of the physical structure or behavior of a device (or 
devices) by an abstract mathematical model which approximates 
this behavior. Such a model may either be a closed form expression 
(analytical model), or a system of simultaneous equations which are 
solved numerically.

Device Modeling - Modeling of the physical behavior of a 
semiconductor device.  The term is often used in practice to 
mean the representation of a device in terms of a lumped 
parameter model used in higher level circuit simulation of 
complex integrated circuits. In the broader sense it includes both 
physical simulation and more abstract mathematical 
representations.
Device Simulation - Simulation of the device behavior by the 
approximate numerical solution of the (approximate) physical 
transport and field equations governing charge flow in the device, 
usually represented in a finite space (device domain).

Hierarchy of Models
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Analysis - Simulating the behavior of a device (or 
circuits) with a physical model to understand the 
dependencies and limiting physical mechanisms in 
the device/circuit performance (e.g. effects of noise, 
limits on frequency/gain, trap effects, effects of 
geometry).

Design - Systematic use of a device/circuit model to 
achieve a desired functionality.  For device design, 
and low level circuit design, the process is mainly an 
iterative, trial and error approach prior to actual 
physical implementation of a device or a circuit.

Goals of Device Modeling
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• There are 2 main components in physical device simulation: 
(1) Charge motion due to driving forces and diffusion 

(transport) 
(2) Fields due to charge distribution and motion (i.e current)

• Analytical solutions are only possible in 1D.  Numerical solutions 
require discretization of (1) and (2) above onto a mesh, and 
solution of simultaneous algebraic equations

• (1) and (2) must be solved simultaneously (self-consistently)

Recessed MOSFET represented on
3D mesh over finite domain

Physical Device Simulation
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• In general, one needs to solve Maxwell’s equations 
inside and outside the device:
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• Numerical techniques to solve include:
- Time domain solutions (FDTD)
- Frequency domain solutions (spectral techniques)

• At present, nearly all device simulation tools assume the 
quasi -static approximation, such that the electric field is 
obtained from Poisson’s equation:
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Solution to the Field Equations
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Quantum Approaches

Boltzmann Equation Monte Carlo Particle
Approaches

Moments of Boltzmann
Equation (Hydrodynamic and Energy

Transport Approaches)

Drift-Diffusion Approaches

Compact Approaches

Hierarchy of Semiconductor Simulation 
Models
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Drift-Diffusion Equations

• Derivation of the Current Continuity 
Equations

• Derivation of the Electron Current Equation
• Validity of the Drift-Diffusion Model
• Physical Limitations of the DD Model
• Choice of Variables in the Drift-Diffusion 

Model
• Boundary Conditions
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• Start from Maxwell’s equations given in the previous slide:

• Applying the divergence operator to the first equation leads 
to:

• Use: J = Jn+Jp and

• Arrive at the following final results: 
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Derivation of the Current Continuity 
Equations
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• Start from the steady-state Boltzmann transport equation 
(for 1D case) in the relaxation-time approximation

• Multiply by the velocity v and integrate over v, to get:

• Final expression:
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Derivation of the Electron Current 
Equation
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• Neglect the drift energy and use the Einstein relation for the 
consideration of the diffusion coefficient and mobility, to get:
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(a) Low-field distribution function

(b) High-field distribution function 
when the kinetic energy gained 
appears mostly as drift energy

(c) High-field distribution function for 
conditions under which the kinetic 
energy gained from the field 
appears mostly as thermal energy

(a)

(b)

(c)
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(a) Approximations made in its derivation

• Temporal variations occur in a time-scale much longer 
than the momentum relaxation time.

• The drift component of the kinetic energy was neglected, 
thus removing all thermal effects.

• Thermoelectric effects associated with the temperature 
gradients in the device are neglected, i.e.

• The spatial variation of the external forces is neglected, 
which implies slowly varying fields.

• Parabolic energy band model was assumed, i.e. 
degenerate materials can not be treated properly.
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Validity of the Drift-Diffusion Model

nanoHUB.org
online simulations and more

Network for Computational Nanotechnology

(b) Extension of the capabilities of the DD model

• Introduce field-dependent mobility µ(E) and diffusion 
coefficient D(E) to empirically extend the range of validity 
of the DD Model.

• An extension to the model, to take into account the 
overshoot effect, has been accomplished in 1D by adding 
an extra term that depends on the spatial derivative of the 
electric field

1. K.K. Thornber, IEEE Electron Device Lett., Vol. 3 p. 69, 1982.

2. E.C. Kan, U. Ravaioli, and T. Kerkhoven, Solid-State Electron., Vol. 34, 995 
(1991).
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• The complete DD Model is summarized below:

Current equations:

Continuity equations:

Poisson Equation:

• A numerical scheme that solves the continuity equation 
should:

(a) Conserve the number of particles in the device,
(b) Respect local positivity of the carrier density, and
(c) Respect monotonicity of the solution. 
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Physical Limitations of the DD Model 
(discretization)
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• Conservative schemes for the continuity equation are achieved 
with the following discretization scheme:

• Requirements:
(a) the mesh size must be smaller than the Debye length LD

(b) Time step must be smaller than the dielectric relaxation 
time:  
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• Natural variable formulation:  (V, n, p)

• Quasi-Fermi level formulation: (V, φn, φp)

• Slotboom variables: (V, Φn, Φp)
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Choice of Variables in the 
Drift-Diffusion Model
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Standard way of scaling due to de Mari:

Space: Intrinsic LD (N=ni)
Extrinsic LD (N=Nmax)

Potential: Thermal voltage

Carrier density: Intrinsic density N=ni

Extrinsic density N=Nmax

Diffusion Coeff: D0

Mobility µ

Recomb./Gen. R

Time: T

)/( 2NeTkL BD ε=

eTkV BT /=

scm /1 2

TVD /0=µ
2

0 / DLNDR =

0
2 / DLT D=

Normalization of Variables
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From the aspect of device physics, one can distinguish 
between the following device boundaries:

(1)  Contacts, which allow a current flow in and out of the 
device

- Ohmic contacts: purely voltage or purely current 
controlled

- Schottky contacts

(2)  Contacts where only voltages can be applied

(3)  Interfaces, where current flow disappears

(4)  Artificial boundaries, where neither electric field nor

current flow exists

Boundary Conditions

nanoHUB.org
online simulations and more

Network for Computational Nanotechnology

MOSFET Lateral BJT

Examples of different boundary conditions:

Boundary Conditions, Cont’d
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(A) Boundary conditions for Ohmic contacts

Electrostatic potential:

• Voltage-controlled ohmic contact (Dirichlet boundary 
conditions):

n-type sc:

p-type sc:

• Current-controlled contact (integral boundary 
condition):
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Electron and hole densities:

• The electron and hole densities are determined by 
assuming charge neutrality and thermal equilibrium

n-type sc:

p-type sc:

• Low temperatures:
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Arsenic  Phosphorus  Antimony  Boron
0.054        0.045           0.039     0.045

Arsenic  Phosphorus  Antimony  Boron
0.054        0.045           0.039     0.045

Donor and acceptor 
energy levels for common
semiconductors in Si [eV]

Ohmic Contacts, Cont’d
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(B) Boundary conditions for the Schottky contacts

Material:       Aluminum  Platinum  Titanium
Vschottky [V]        0.68           0.8           0.6
vn,p [cm/s]        5x106            5x106           5x106

Electrostatic potential:

appliedschottky VVtV +=)(Dirichlet boundary condition:

Current:
Neumann boundary conditions (thermionic-emission and 
diffusion theory):
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1. R. Hattori, J. Shirafuji, Jpn. J. Appl. Phys., Vol. 33, pp. 612-618, 1994.

2. J.R. Tucker, C. Wang, and P.S. Carney, Appl. Phys. Lett., Vol. 65, pp. 618-620, 1994.

Schottky Contacts
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(C)  Gate contact (only voltage can be applied)

• Dirichlet boundary condition for the potential:

• Values of the work-function for different gate materials:

appliedMS VtV +Φ=)(

( )[ ] MbulkicscMS EE
e

Φ−−+=Φ χ1

Material:     n+-poly     p+-poly     Aluminum
ΦMS [V]       0.55          -0.50           0.50

Material:     n+-poly     p+-poly     Aluminum
ΦMS [V]       0.55          -0.50           0.50

Metal or
poly-silicon
gate

p-type Si

SiO2

EC

EF
EV

Gate Contact
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• The normal components of the dielectric displacement 
vector must satisfy the Gauss law in its differential form:

• For  MOSFETs, simplified boundary condition would be:

(D)  Semiconductor/Oxide Interfaces

Electrostatic potential:
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Semiconductor/Oxide Interface
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This type of boundary is not based on physical consideration. 
Therefore, it is called an artificial boundary. One applies 
Neumann boundary conditions for both the electrostatic 
potential and current, i.e.

(E)  Artificial boundaries
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