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Equilibrium Distribution Function

• The probability of a state with energy E being occupied with 
spin 1/2 electrons, for which the Pauli exclusion principle is 
valid, is given by the following function: 
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• Fermi-Dirac distribution 
function, valid in thermal 
equilibrium.

• In non-equilibrium conditions, 
one actually has to solve for 
the distribution function.
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Approximate Forms of the Non-
Equilibrium Distribution Function

• The most difficult problem in device analysis is to 
calculate the distribution function f(r,k,t). 

• To overcome these difficulties, reasonable guess for 
the distribution function is often made. Two most 
commonly used approaches are:

Quasi-Fermi level concept.
Displaced Maxwellian approximation for the 
distribution function.
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• Under non-equilibrium conditions, it may still be useful 
to represent the distribution functions for electrons and 
holes as

• Therefore, under non-equilibrium conditions and 
assuming non-degenerate statistics, we will have

• where NC and NV are the effective density of states of 
the conduction and valence band, respectively.
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(A) Quasi-Fermi Level Concept
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• The product

suggests that the difference EFn - EFp is a measure for 
the deviation from the equilibrium.

• However, this can not be correct distribution function 
since it is even in k, which means that it suggests that 
current can never flow in a device. 

• The fact that makes it not so unreasonable is that 
average carrier velocities are usually much smaller than 
the spread in velocity 
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Energy band profile of a pn-diode under equilibrium and non-equilibrium 
conditions. Note that to get the excess electron density (bottom right panel) 
the electron quasi-Fermi level must move up (top right panel), thus increasing 
the probability of state occupancy. The same is true for the excess hole 
concentration, where the hole quasi-Fermi level moves downward.
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(B) Displaced Maxwellian
Distribution Function

• A better guess for the distribution function f(r,k,t) is to assume 
that the distribution function retains its shape, but that its 
average momentum is displaced from the origin. For example, 
particularly suitable form to use is

Displaced Maxwellian
distribution function.
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•Using this form of the distribution function gives

• In the same manner, one finds that the kinetic energy 
density per carrier is given by

The first term on the RHS represents the drift energy due 
to average drift velocity, and the second term is the well 
known thermal energy term due to collisions of carriers 
with phonons 
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Boltzmann Transport Equation 
(BTE)

( ) ( ) ( )tftAddtA ,,,, rvrvvr∫ ∫=

1.  Derivation of the 1.  Derivation of the BoltzmannBoltzmann Transport EquationTransport Equation

Kinetic theory:  We need to derive an equation for the 
single particle distribution function f(v,r,t) (classical) which 
gives the probability of finding a particle with velocity 
between v and v+dv and in the region r to r+dr

• We assume that v and r are given simultaneously 
which neglects quantum mechanical nature of 
particles.

• f(v,r,t) allows us to calculate ensemble averages over 
velocity and space (particle density, current density, 
energy density, etc.):
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• For this to give the proper average, f is normalized as 
follows:

• To derive an equation of motion for f(v,r,t), it is somewhat 
easier to consider the particle density

where  

• The density n(v,r,t) should satisfy a continuity equation in 
the 6D phase space defined by 

( ) 1vr =∫ ∫ tfdd ,,rv
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BTE Continued …
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• Consider a hypervolume in phase space

j(r,v,t) is the flux density

j(r,v,t)•ds is flux through 
hypersurface ds

• Consider the particle balance through the hyper-volume V
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BTE Continued …
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• The flux density is written in terms of the time derivatives 
of the ‘position’ variables in 6D:

• Applying the divergence theorem in 6D:

where the divergence of j is:
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which is written more compactly as:

• Particle balance is therefore:

Normalizing, we get the classical form of the Boltzmann
transport equation:
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First two terms on the rhs
are the streaming terms

BTE Continued …
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• For Bloch electrons in a semiconductor, we could have 
considered a 6D space x,y,z,kx,ky,kz where k is the 
wavevector and 

• The semi-classical BTE for transport of Bloch electrons is 
therefore
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2.  2.  CollisionalCollisional IntegralIntegral

Assume instantaneous, single collisions which are 
independent of the driving force and take particles from k
to k′ (out scattering) or from k′ to k (in scattering).

k ′

k
zk

yk

xk In scattering

Out scattering

xk

Collision Integral
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(A) Out Scattering

where        is the transition rate per particle from k to k′

Distribution function is:

Take limit as ∆t→0

where the last term in brackets accounts for the Pauli
exclusions principle (degeneracy of the final state after 
scattering). 
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(B) In Scattering

By an analogous argument, the rate of change of the 
distribution function due to in scattering is:

Total rate of change of f (r,k,t) around k is a sum over all 
possible initial and final states k′:
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(C) Boltzmann Equation with Collision Integral

The sum over final states k′ may be converted to an integral 
due to the small volume of k-space associated with each 
state:

The BTE becomes:
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3.  Scattering Theory3.  Scattering Theory

What contributes to        ?kk ′Γ

Scattering Mechanisms

Defect  Scattering Carrier-Carrier Scattering Lattice Scattering

Crystal
Defects

Impurity Alloy

Neutral Ionized

Intravalley Intervalley

Acoustic OpticalAcoustic Optical

Nonpolar PolarDeformation
potential

Piezo-
electric

Scattering Mechanisms
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Scattering Theory
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Additional Notes: Time dependent perturbation theory

• Assume the Hamiltonian may be decomposed as H=H0+Vs,
where H0 is the Hamiltonian of the perfect crystal (described 
by Bloch states), Vs(r,t) is a small random potential.  If 
Vs<<H0, then it is a good approximation to expand the 
solution (with random part) in terms of unperturbed 
eigenstates:

• Expand actual solution in terms of these orthonormal
functions:
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• If the initial wave packet is centered around ko, so that

• In the limit at t→∞, the probability of finding the particle in 
another state ko′ is

• Define the transition rate

• Solve for       using the S.E. and the previous expansion
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H0 part cancels with phase factor on RHS

• Multiply both sides by                           and integrate

where the matrix element, using Dirac notation, is defined 
as
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• Assume sufficiently weak scattering that  cko≈1, and  
ck≠ko≈0 for all time. The dominant term in the sum is:

which integrates to

• Suppose V(r,t) may be Fourier decomposed, so that

Note that this form of V(r,t) may correspond to interaction 
with lattice vibrations or with optical excitation.
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• Then substituting

and integrating this last expression leads to

• Since the probability of being in k0′ is given by
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• Substituting for c and taking the magnitude squared gives

where asymptotically

This gives the famous Fermi’s Golden Rule (droping 0’s 
index)

• Assumptions made:
(1) Long time between scattering (no multiple scattering events)
(2) Neglect contribution of other c’s (Collisional broadening ignored)
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