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Electronic States in 
Semiconductors

A. Free Electrons

Most transport descriptions in semiconductors treat electrons 
as quasi-free particles within the effective mass 
approximation.  For free particles, the electron wave function 
is the solution to the time-independent Schrödinger equation:

The solutions form the basis of plane waves:

with: 
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The velocity, v, of a particle represented by a wave packet 
centered around the crystal momentum, k, is obtained from 
the dispersion relation between k and the energy E as

If we consider that the system is bounded within a volume, V, 
and apply periodic boundary conditions

Thus, k, takes on discrete values, 
with a volume per cell in k-space of
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Normalization of the wavefunction
in the volume V requires:

The countability of the states within the system volume, and 
the dispersion relation between k and E leads to the density 
of electronic states per unit volume

where the factor of (2) is due to the 2-fold spin degeneracy of 
each allowed state in k-space.

Since the density of k states is quite large in 
macrosopic systems, summations over k
may be replaced by the coarse grain integral : 
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B. Bloch Functions and Reciprocal Space

Translational symmetry in a crystal implies that

where l, m, n are integers, and a is the primitive translation 
vector of the real space lattice.  

The eigenstates of the time independent Schrödinger 
equation are given by Bloch Functions

The periodic part of the Bloch function may be expanded in a 
Fourier series in 3D defined in reciprocal space
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Reciprocal Space

For a 1D periodic function: 
We may expand it in a Fourier series

The Fourier components are defined on a discrete set of 
periodically arranged points (analogy: frequencies) in a 
reciprocal space to coordinate space.

3D Generalization
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Due to the periodicity requirement of cell-periodic part

The basis vectors of reciprocal space are given by

The total Bloch function may be expanded as

With associated properties: 
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C. Band Structure in Diamond (IV) and Zinc-Blende
(III-V) Crystals

• Tetrahedral coordination (sp3 orbitals)
• Interpenetrating FCC lattices (1/4 1/4 1/4)
• 2 atom basis
• Diamond Structure (Si, Ge)- Same atom in basis (inversion 

symmetry)
• Zinc-Blende (GaAs, InP)-

Opposite atoms form 
basis, partially ionic 
bonding Ga(Si)

As(Si)

Typical Semiconductors
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• The periodic set of allowed 
points corresponding to the 
Fourier (reciprocal) space 
associated with the real 
(space) lattice form a 
periodic lattice 

• The Wigner-Seitz unit cell 
corresponding to the 
reciprocal lattice is the First 
Brillouin Zone

• Γ is zone center, L is on 
zone face in (111) direction, 
X is on face in (100) direction

First Brillouin Zone for Zinc-
Blende and Diamond real space
lattices

First Brillouin Zone
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Empirical Pseudopotential Method

- Popular, straightforward technique for calculating the 
bandstructure in semiconductors is the empirical 
pseudopotential method (EPM).1,2 This technique is 
used, e.g., in DAMOCLES to calculate the band structure 
used in Monte Carlo simulation.  

- Stationary Bloch state solutions calculated by expanding 
in reciprocal space, and adjusting the (finite set of ) 
Fourier coefficients to fit experimental energy gaps and 
optical spectrum.

1 M.L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 780-796 (1966).

2 D. K. Ferry, Semiconductors (1991), pp. 137-141.
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Consider the origin at the halfway point between the cation(1) 
and the anion(2).  Let rb be the basis vector of FCC Bravais
lattice corresponding to the zincblende (diamond) structure. 
(1) is located at -rb/2 while (2) is at rb/2.

The Hamiltonian is of the form:

where 

with a1, a2, and a3 primitive vectors of the FCC lattice (each 
lattice site represents the midpoint of the 2-atom basis
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Expand:

The Fourier coefficient is:

with the volume of the primitive unit cell:

Split potential into
cation and anion 
portions

where V1 and V2 represent the atomic-like potentials centered 
at ± rb/2 (pseudopotentials which are smooth compared to the 
actual rapidly varying core potential) 
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Model Potentials
 

(a)   Constant effective potential in the core region: V ( r ) 
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(b)   Empty core model: V ( r ) 
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(c)  Model potential due to Heine and Abarenkov: 
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(d)  Lin and Kleinman model potentials: 
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Using the displacement property of Fourier series

Split into symmetric and anti-symmetric parts
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For covalent materials, V1=V2 so that Va=0

Recall the expansion of the wavefunction in Bloch states:
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Substitute into the Schrödinger equation

Multiply by e-iG"r and sum over all G’’ assuming

or
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*In the empirical method, the form factors, V(G), for discrete 
values of G are treated as adjustable constants which are 
tabulated.  Assuming the series converges, only the first few 
terms are important.

Must specify possible values of G
For the FCC real lattice, the reciprocal lattice is the BCC lattice 
with primitive unit vectors
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In terms of the unit Cartesian vectors, nearest neighbor sites in 
reciprocal space correspond to

G group # Total number |G|2 (2π/ao)
2

(units 2π/ao) permutations of elements units

(0,0,0) 1 1 0
(1,1,1) 8 9 3
(2,0,0) 6 15 4
(2,2,0) 12 27 8
(3,1,1) 24 51 11
(2,2,2) 8 59 12
(4,0,0) 6 65 16
(3,3,1) 24 89 19

The pseudopotential form factors are typically given up to 
G2=11

Reciprocal Vectors
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The pseudopotential form factors for a number of materials 
have been derived for various semiconductors.  Those given 
by Cohen and Bergstresser are shown below:

Form Factors

nanoHUB.org
online simulations and more

Network for Computational Nanotechnology

Assume we chose |G|2=19 to be sufficiently accurate to 
represent the bands.  There are then 89 set of simultaneous 
equations which form the matrix eigenvalue equation:

where H is an 89x89 array, U is an 89 element column vector 
representing the eigenvectors, and E is an eigenvalue
corresponding to one of the eigenvectors.

Using a standard linear algebra subroutines in for example 
EISPACK, the eigenvalues and eigenvectors are obtained for 
each k.  Sorting the lowest eight eigenvalues corresponds to 
the lowest 4 valence bands, and the first 4 conduction bands. 

UUH E=•

Numerical Solution
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Silicon Germanium

Sample Simulation Results


