

nanoHUB.org online simulations and more

Bloch Theorem

If the potential energy $V(\mathbf{r})$ is periodic, then the solutions of the SWE are of the form:

```
\phi_{\mathbf{k}}(\mathbf{r}) = \exp(i\mathbf{k} \cdot \mathbf{r})u_n(\mathbf{k},\mathbf{r})
```

where $u_n(\mathbf{k},\mathbf{r})$ is periodic in \mathbf{r} with the periodicity of the direct lattice and *n* is the band index.

Methods used to calculate the energy band structure:

- → Tight-binding method
- \rightarrow Orthogonal plane-wave method
- → Pseudopotential method
- \rightarrow k•p method
- → Density functional technique (DFT)

nanoHUB.org simulations and more		Important Parame		
Name	Symbol	Germanium	Silicon	Gallium Arsenide
Band minimum at <i>k</i> = 0				
Minimum energy	E _{g,direct} [eV]	0.8	3.2	1.424
Effective mass	m_e^*/m_0	0.041	0.2	0.067
Band minimum <i>not</i> at <i>k</i> = 0				
Minimum energy	E _{g,indirect} [eV]	0.66	1.12	1.734
_ongitudinal effective mass	m _{e,1} */m ₀	1.64	0.98	1.98
Fransverse effective mass	$m_{e,t}^*/m_0$	0.082	0.19	0.37
Navenumber at minimum	k [1/nm]	XXX	XXX	XXX
_ongitudinal direction		(111)	(100)	(111)
Heavy hole valence band naximum at <i>E</i> = <i>k</i> = 0				
Effective mass	m _{hh} */m ₀	0.28	0.49	0.45
Light hole valence band maximum at $k = 0$				
Effective mass	m_{lh}^*/m_0	0.044	0.16	0.082
Split-off hole valence band maximum at <i>k</i> = 0				
Split-off band valence band energy	E _{v,so} [eV]	-0.028	-0.044	-0.34
Effective mass	m_{hso}^{*}/m_{0}	0.084	0.29	0.154

nanoHUB.org

Effective Masses

In transport calculations there are two different masses in use:

Density of States effective mass – used in DOS calculations

$$m_{e,dos}^* = M_C^{2/3} (m_l m_t m_t)^{1/3}$$

Conductivity effective mass – used in conductivity calculations, which for ellipsoidal constant energy surfaces is calculated using:

$$m_{e,cond}^{*} = \frac{3}{\frac{1}{m_{l}} + \frac{1}{m_{t}} + \frac{1}{m_{t}}}$$

Values of Effective Masses				
Symbol	Germanium	Silicon	Gallium Arsenide	
$E_{\rm g}({\rm eV})$	0.66	1.12	1.424	
$m_{\rm e}^*, dos/m_0$	0.56	1.08	0.067	
$m_{\rm h}^{*}$,dos/ m_0	0.29	0.57/0.8	0.47	
$m_{\rm e}^*_{\rm ,cond}/m_0$	0.12	0.26	0.067	
$m_{\rm h}^{*}$,cond/ m_0	0.21	0.36/0.38	0.34	
	Symbol E_g (eV) $m_{e^*,dos}/m_0$ $m_{h^*,dos}/m_0$ $m_{e^*,cond}/m_0$ $m_{h^*,cond}/m_0$	Symbol Germanium E_g (eV) 0.66 $m_{e,dos}^*/m_0$ 0.56 $m_{h,dos}^*/m_0$ 0.29 $m_{e,cond}^*/m_0$ 0.12 $m_{h,cond}^*/m_0$ 0.21	Values of Effective Symbol Germanium Silicon E_g (eV) 0.66 1.12 $m_{e,dos}^*/m_0$ 0.56 1.08 $m_{h,dos}^*/m_0$ 0.29 0.57/0.8 $m_{e,cond}^*/m_0$ 0.12 0.26 $m_{h,cond}^*/m_0$ 0.21 0.36/0.38	

Network for Computationa

N -