1 Time-dependent perturbation theory

e One of the main tasks of quantum mechanics is the calculation of transition
probabilities from a state |n) to another state |m). There transitions occur
under the influence of a time-dependetn perturbation which, so to say, “shakes”
the system and so assumes transition.

To caclcualte the change in 9 (r,t) due to the action pf the perturbation V(r,t),
one needs to solve the time-independent SWE:

o ~
h— = H t 1
in20 = Frp(re 1 (1)
where
H = Hy(r) + V(r,t) (2)
operator for total energy perturbing potential
of the system without

perturbation

In principle, this is a rather formidable problem and general predictions can
only be made if the transition is caused by weak influences, i.e., weak potentials
V(r,t). These influences are trhen interpreted as perturbations.

e We first consider the unperturbed system:

N P |
i = Ha(r)yh(r.) ®)
. 3|n)0 " \ .
ih at —H(](I‘)lﬂ)(] (4)

The stationary part of the normalized wavefunction is assumed to satisfiy
the eigenvalue equation
Hy(r)[n)o = BV n)o (5)

The time-dependent function %, (r,t), of the form

. _iE© .
P (r,1) = e Pt M), (6)
is then a solution of the unperturbed system.

e The wavefunctions 1%(r,t) form an orthonormal and complete set of func-
tions, and the solutions of our general problem can be written in terms of these
functions, i.e.,



blet) = Y au(r.t) (7)
= S antye ), (8)

Inserting the above expression into the TDSE gives:

.0 \ . —iE, (0)t/k _ - , O
mgzn:an(t)e nyo = (Ho(r)-I—V(r,t))zn:an(t)e SR

(9)

or
zﬁz %(@'E&“)t/ﬁ_ —iEgO)a (t)e_iESLO)t/ﬁ [n)o =
— | ot R
=Y an(t)e B [1?10 (r) + V(r,t)} In)o (10)
Using
Hy(r)[n)o = BV [n)o (11)
gives
., Oan —iB®¢/h (0) —iBO¢/n _
S S 5
=3 anELe B0y, + 3 an(t)e B VY (e 1)) (12)
or
. aan i E© \ —iE©¢/R \ \
zﬂ:zﬁﬁe Bt ), = Zn:an(t)e B.HYRY (r, ) |ndo (13)

® We now employ the orthogonality of our basis set for the unperturbed problem.

B ¢/h
1B, /L0<

We multiply the above expression by 1%, (r,t) = e m| and integrate

over the internal variables to get:

Oy ;15O _ g /n A EO _BO]/h
D i gl BN o i)y = 3 an ()P BN )V ingaa)

51n,n



where

nlv o) = [ O @V 090 (15)
The Kroneker-delta on the LHS simplifies our expression, to get
L O0am, JE© _ g0
5 = ;an(wc (B2 BN/ (| V (e, 1) o (16)

Now let’s suppose we have a simple harmonic perturbation, for which

V(r,t) = Vo(r)etiwot (17)
Then
o(m|V(r,t)ln)o = = o(m|Vo(r)|n)o (18)
e:tiwgtvmn (19)
Substituting this gives
00, i[BO) —B® Lwoh]t/h '
W = 3 an(t)ellBn B Ew iy, (20)

n

What we have now is a omplete set of equations for the expansion xoefficients
a.,(t) and their time dependence. Matrix methods can be used to solve problems
of this type, but this is generally very complicated a task.

e The approach that we will follow is as follows. We will assume that before the
perturbation is turned on, the system is in a states k, i.e.,

P(r,0) = |k (21)
= Y au(O)n)odas (22)
= ar(0)k)o (23)

The above expression suggests that the expansion coeflicients at t = 0 are
1, n=k
wo={ 3 "2} (24)

e To understand the meaning of the expansion coefficients, we consider the
normalization of v (r,t)

1 = ((r,t)s(r,t)) (25)
* iE() vy C)
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1= Z lan(t)]?| = The expansion coefficients must satisfiy (1)

the normalization condition

We now calculate the matrix element

0 I (O)t Y _iE® /R o
W 0 ) o TS e e B g (Rl
" 5k,n
_ ak(t)ei[E,(co)t/th,(co)t/h} (29)
= a(t) (30)
Hence
ai(t) = (P (r,O)|(r, 1) (31)

Therefore |aj(t)|? is the probability of finding the system at time ¢ in state
'z/),(cﬂ)(r,t) with energy E,(co)

e Our next task is to calcualte the amplitudes a,,(t) from the coupled set of
differential equations. If V(r,t) is small perturbation, we can make the approx-
imation that even at ¢ > 0, we have

i.e., that the probability that a system will stay in state z/),(co)(r,t) is almost
unity. In this case we need to solve only

590m _ a(t) i ER B £ho]t/n
1' (33)

Integrating the last equation from 0 to ¢ gives

} h i[B© _BO +huo|t/n
ihfam(t) - ad0)] = o [e[ W B |t/ —1] (34)
i[ER) — B o

0 form #k

Introducing the short hand notation

1
W = 7 [E§3> B9+ ﬁwo} (35)

gives



iha,(t) = M(eiwmkf—l) (36)

iwmk
e’iwmkt/z (e’iwmkt/z _ C—iwmkt/z)

= mk . 37
b TWmn ( )
; 12 si mit/2
e il "
LWml
= ei“’m’“t/22—Sin(wmkt/2) Vink (39)
Wmk
or

2 sin(womkt/2)

am(t) _ _iﬁsln(w k / )ezwmkt/ZmG (40)
Wmk

recall that we initially assumed that at ¢ = 0 the system was in as state
,(CO)(r,t) with energy E,(CO) (r,t). Then
|am(t)|*> — probability that the system will make a transition
from state 'lp,(co)(r, t) into state ¢£,?)(r, t).
We denote this transition probability as W, (t).

Therefore
Wor®) = lam(®)]? (41)
. W
A () ”
R? (kat)z 4
2
2 2 (Wt
— |V"Lk| sin ( 2?)t2 (43)
(e’
2
or
Vinke|?
Wi (t) = | ﬁ;' tg(Wonk) (44)
where
: Wkt 2
sin ( —mk
I W) =t [%] (45)
2

For fixes t, g(Wmnit) is of the form shown in the figure below.

e As t gest larger, g(wmxrt) becomes more and more peaked. The peak value is
t, while the distance between the nearest nulls is 47 /%.
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Figure 1: Figure

e It can be shown that

/OO g(wmk:)dwmk =27 (46)

—o0
and is independent of ¢.
e For these reasons, we can view g(w.,x) as t — oo as a function that is very

large for w,,r = 0 but is non-zero around a very narrow range of wy,,, so that
the area is constant. Hence:

Jim g(wm) = 2m6(wm) (47)
Jim g(wmk) = 276 (wmk) (48)
= 276 (%) (49)

= 27hd(Epmp) (50)



e To summarize, in the limit ¢ — oo, the probability W,x(t) is

War(t) = ﬁ,_2|mG|2t - 27hd (Er) (51)
2

=t |Vausl?8 (B = B £ i) (52)

= tSmk (53)

The limit ¢ — oo can be used only in the case when one scattering event
finished before that next one starts, i.e., when the scattering in INFREQUENT.

Spr = Wmf’“(t) (54)

2 .
‘ = (Vourl?6 (BS) = B & hu ) (55)
transition rate — probability for transition in a time interval ¢

The formula for the transition rate Sp,, was named by Fermi( as somw

measure of importance) THE GOLDEN RULE.
e Summary of approxiamtions made in deriving Fermi’s golden rule:

(a) Weak perturbation which gives no depletion of the initial state ar(t) =1
for all times.

(b) the limit ¢ = oo can only be used when we are in a weak (infrequent)
scattering regime. It led to energy conservation in the scattering process, which
is not necessarily satsified when we have heavy scattering in the system.

e In transport theory one talks about scattering (transition rate) from state k
to state k' :

2n . .
S(k,lﬁ,) = F|Vk’k’|26 (Ekl — Ek + Fbwo) (56)

The total scattering (rate) out os state k is then given by

T(k) =Y S(k,}) (57)
kl

e Summary on notation

Wi — Probability for transition from state k to state m [W(k,E')].
Smk — transition rate from state k to state m [S(k, k)]

P(k) =3, W(k,k") — total probability for scattering out of state k
(k) =3, S(k, k') — total scattering rate out of state k.



(A) EXAMPLE THAT SHOWS UNDER WHAT CONDITIONS IS FERMI'S GOLDEN RULE VALID

PROBLAM STATEMENT

Consider the potentia barrier of the form

N o Vg, 0<Z<d
Us(2) _{ 0, 2<0;z>d (58)

which we can view as a scattering potential. If one solves this problem
exactly, then the probability of reflection Rp for E > Vj is given by

. sin? (kd) .
Rp(E) = (59)
7 sin® (kd) + 4 £ (% - 1)

where

k=B~ V) (60)

Use Fermi’s Golden Rule to calculate Rp and compare it with the exact
result. Under what circumstances is the Fermi Golden Rule valid?

SOLUTION

The matrix element for transition from state k to state k' is given by

1 d L |
Vk,k’ = _/ Vocz(k —kz)dz (61)
L, J,
Vo 1 d
= _07 i(k'—k)z 6
L ik —k)° ) (62)
Vo 1 (k' —k)d
T LM -k -1 63
Ll ] )
Vy ¢i(k —k)d/2 [ei"“"’“)d/z - e_i(k’—k)d/2:|
= L. ik — k) ~ (64)
} i2sin [(k' — k)d/2]
Jo ot o
- Eei(k’—k)d/z/2 sin [(k' — k)d/2] )
Lz /(k/ _ k)
Vo i sin [(k’ — k)d]
= _el(k 7k)d/2d—c,lz (66)
L (k' — k)

The total scattering probability out of state k is then given by



27T

2%T 4V sin® [(K' — k) 4]
= dk'5( B 0 — 2 68
/ ’“ womr
Since
th'2
E ;=
k 2m (69)
(for parabolic bands); we have
hZ
dEy = —k 'dk' (70)
From the energy conservation function we have |k'| = |k|, but for reflection
we only need to consider &' = —k. Therefore
s TL, 4V [ m* sin” [(k' — k) £] ,
P)k) = 7 L—g/ 7'2|L’|6(Ek — E; )WdEk’ (71)
_ 4VET m* sin®(k'd) (72)
RL, R2|k| 4k2
TVZm*
= ﬁ3£7 Sll’l2 (kd) (73)

Now the upper limit of the integration T is equal to the time it takes for
electrons to cross the length L, i.e.,

L,
T = =2 (74)
v
L, .,
= =m (75)
4 (76)
T m*
. = T (77)
This gives
P(k) = Vem® " sin? (kd) (78)
R*E® Bk
m*Vy\’
= (fi’k20> sin® (kd) (79)



!

This is Fermi’s golden rule result
e Now Consider weak scattering, i.e., E > Vj (the electrons do not feel the

presence of the barrier very much). Then the following approximations are
valid

2m

K = h—z(E—Vo) (80)
2mE .
= k? (82)
ie.,
2mE

b=l ‘T (83)

identical to what is
used in Fermi’s golden rule

The reflection coeflicient Rp is then given by

Ry — sin? (kd) (84)
B= 5 E(_E
sin (kd) + 470 (HO]‘)
sin? (kd) .
+(#)
R /Y ,
= gt (kd) (86)
V2
Rp = %sirﬁ(lyd) (87)
4 (%)
mVo\? .
= (ﬁzkg) sin? (kd) (88)

!

This expression is identical to the Fermi
golden rule result, which implies that
the Fermi golden rule is valid when

the scattering is weak

(B)Elastic Scattering Of Electrons
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With this example, we will demonstrate the application of Ferm’s Golden Rule
and simulataneously illustrate some concepts of scattering theory.

e We consider the Coulomb interaction between a charge center (Ze) and the
electron as a perturbation. The perturbing potential is given by

Z 2 —’r‘/LD
Vie)=2° " (89)
4mer
where
v
Lp =% (90)
qn

is the Debye screening length.

e Before we apply the result of first-order time dependent theory, we need to
introduce the concept of SCATTERING CROSS SECTION (a quantity that
can be measured), starting from the definition for the probability for transition
from state k to state k':

27T
W(k,k') = T|ka/|25(Ek: — Ey) (91)

Note: Coulomb interaction is to first order time independent, which means
that only w = 0 term will be non zero.

The total probability for scattering out os state k is then given by

! L 3 1./ !
P(k):%:vv(k,k) = G ///d E'W (k,E') (92)

Note that the factor of 2 for spin is not included since we assume that the spin
of the particle is the same before and after scattering. In spherical coordinates,

d*k = k*dkd(cos 0)d¢ (93)
which gives
Q oo 1 2m
P(k) = k de'/ d(cos 0)/ dpW (k, k) (94)
1 0

3
8 0 —

Q 2T [> . ' o :
= = / kzdk’/ d(cosa)/ d|Viw |6(Er — BEr) (95)
8t h J, J_1 Jo

QT [
2 27 2 1.0 2
k*dE | Vi |20 (Exr — Ek)
d(cos @ do 4 Zﬁ/
_ [t [ an 3 — (96)
P(8, )
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We can simplify the expression for P(6,¢) if we consider parabolic bands,
for which

ﬁzk’2 »
5 = i (97)
4
hZ
—KdE = dEu (98)
m*
4
= " am 99
2|k E (99)
Therefore
Qr [
P#.¢) = 47r2h/ k" Vi |?6( By — Ey)dk' (100)
0
QT [ m*
= 5 / leka/lz(g(Ek/—Ek)m dEkl (101)
4n’h J, hz%
m*QT [
- 47r2h3/0 K |Vir |*8( By — Ey)dEj (102)

The d-function in the integral requires Ej = Ej, which means that the
intital and final momenta have same magnitude, i.e., |k’| = |k|. This means

that we can immediately perform this integration to get

m*QTk

2
Rl

P(6,¢) = (103)

k'=k
Now, let T" be the time required for the electron to traverse the box of length
L, ie.,

L, L, _ Qm*

T="=—m"=——— 104
v Rk T ARk (104)
A — cross section of the box
Q= L,A — volume of the box
With the above definitions, we have
P8,¢) = v — Vi [? (105)
4 Aﬁé/ k'=k
m*Q 2 |ka’|i1_k
= = 1
(27rh2> A (106)
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= ( m’ )2 |Qka’|2’=k

1
2mh? A (107)
a(8,¢)
R 1
- (108)
where
m* \?
a(8,¢) = (2 ﬁ2) |QViw|3_;, — scattering cross section (109)
T

To get the total scattering cross-section o5 we need to integrate over the
entire solif angle, i.e.,

os = [JZW sin Od6 [JZW dpa(0,d) (110)

e Physical explanation of the scattering cross-section o (6, ¢)

&/

— /
—— i
e ESE TR, |
- @)
ineident i N
electron beam La £
F K E

é

Figure 2: Figure

(1) One can view the scattere as a solid obstacle with a cross-sectional are o,
chich scatters a fraction of the incident electrons equal to

Os

- (111)
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The analysis to be described below is only accurate when o5 < 1, i.e., if the
total number of scattered electrons is a small fraction of the incident electron
number.

(2) Usually, we have electrons moving through a medium of certain density (Ny)
of scattering centers and we want to know the probability P.(t) that an electron
is scattering within a time t.

Since each scatterer scatters a fraction o4/A of the electrons, and the total
number of scatterers encountered during time period t is

NgAvt (112)
for small ¢, we can write
Os
P,(t) = XNIAvt (113)
t
= = 114
: (114)
= o,Nvt (115)
where
1 .
= 116
T osN;v ( )

is the mean-free time, or average time between scattering events.
Therefore, to evaluate 7, we need to evaluate the total scattering cross section

o =/11 d(cos 6) /0% dpo (6, ) (117)

where

m*

2
o(6.9) = (F) [ 2., (118)
e Calculation of the matrix element Vip:

The matrix element Vi is evaluated from

1 o ,
View = 5///d37"V(r)e’(k “lor (119)

The volume 2 of the box to which we normalize all wavefunctions is com-
pletely arbitrary and unphysical, but it will never appear in the final result for
some measurable quantity.

14



We now define 8= k'’ — k as being equal to the momentum transfer in
the scattering process. Since we have a freedom in choosing the coordinate

system,we can choose 3 to be aligned with the z-axis, i.e.,

B-r=p-rcosb

With this choice of the coordinate system, we have:

1 o) 1 2m VA 2 )
0 4mer

—r/Lp iBrz
47T€Q/ / die [1 dre

1 ) 1 .
/ dxez,@rm — -_ezﬁra:
-1 'LIB'I’
—1
— 1 ( iBr —i,@r)
zﬁr

or

e el s

— e(iB=1/Lp)r _ —(p+1/Lp)r| 4,
'Lﬂ / e ] dr

47T€Q
_ 2@l v peyiey| L st
269,6 i,@—l/LD ’Lﬁ+1/LD
_zéif 1
T 2Qip | iB-1/Lp iB+1/Lp
7 1 8- 1/Lp+iB+1/Lf
T 2048 B2 —1/1%
_ zf 1 i
T 2eQiB B2+ 1)L
Ze? 1

e B2+ 1/L%

Since B = k' —k and |k'| = |k|, we have
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(127)
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(129)
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B = B-p (132)

= (K -k)-(k'-k) (133)
= k' —2kk' cos + k2 (134)
= 2k% — 2k%cosf (135)
= 2k*(1 —cos#) (136)
6
= 4k%sin® (§> (137)
Therefore
Ze? 1 .
Vi = — 138
H= 0 dein? (9) + L (138)
= D

and the scattering cross-section is given by

o\ 2
m .
709 = <%m)'gmﬁﬂw (139)
2 2
* 4 Z 2 1

- <2mf2) ( e) 2 (140)

mh € 2208 1

(4L sin (2) + L%)

Important consideraions

We define the Bohr radius

4deh?
= 141
“o Zm*e? (141)

Then
. “Ze?\’ L4 .
o0,¢) = (m 62 ) D 5 (142)
2meh [1+4k2L% sin® (8)]

4L4 1

= D (143)

ap [1 + 4k2L3, sin? (g)]2

(a) If the Debye length is small compared to the electron De Broglie length
(= 2n/k), then

LZ L2 kz
= a9
&
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and the factor

v =4k’I% <« 1 (145)
4L%

= 0(8,¢) ® —2 = const (146)
@y

In this case, the scattering cross-section is nearly independent of # and scat-
tering is considered isotropic (low-energy electrons)

(b) If 4% > 1, i.e., k? is very large, then

o(0,4) ~ 4L§'! ! (147)
ag 16k4L‘;,{ sin*(6/2)
S S (148)
4aZk* sin*(6/2)

Scattering is anisotropic and peaked around # = 0. Therefore, high energy
electrons are hardly deflected.

8,4 & p

Gloy)
|

e

& EE?'I'.-T-."._‘.'

:ﬁ;{;-{-i.ﬂfﬁ.}:f —

Figure 3: Figure

e To get the total cross-section, we need to integrate over the entire solid angle
to get

1 2m 4
o5 = / d(cos ) / d¢ 4L2D L . (149)
-1 0 % [1 + 721(1 — cos 9)]

Define
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z = cosf
and
2
y=1+ %(1 — )
Then
2
dy = —%dm

and the limits of integration are

2
m=c039=1=>y=1—l—77(1—1)=1

2
m:cos@:—l:>y:1+77(1+1):1+72

With these substitutions we have

414 1 2 1
oy = ?D o7 - / <__2) dy_2
ay 142 v Y

_ 16nLd /1”2 dy
- a(z],),z y2

_ 16nL} (_l) 1497
agy’ \ v
16mL3 1

= 2 zD [_ 2 +1]
ap”Y L4+

_ 167L% ot
a5y’ 1+92

tont, / +7 -

1

oy = 5
a%’Yi/ 144«
_ 167rL’}’3 1
- ail 1492
where y? = 4k* L%
To summarize
167rL‘11_) 1
Os = 2 272
ag 1+4k*L%
I 1
T= osNv
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(151)

(152)

(157)
(158)

(159)

(160)

(161)

(162)

(163)



1
= — =o0,Nv (164)
T
ie.,
1 Bk 16rLy 1

-= N; @ TTARLE — Brook’s - Herring result (165)

— low energy electrons

=~ Np— - (166)
T m*  ag
— high energy electrons

1 hk 16w L% 1 :
- ~ N b__— 167
T T a? 4k2L% (167)

An L2 AN
iy L (168)

m*agk

— when Lp — oo (depletion region of semiconductor), os and 1/7 are
large.

It is important to note that once Lp gets comparable to the inter-impurity

spacing (~ Nl_l/3), the Coulomb potential of nearby impurities overlap. It is
then necessary to modify Brooks-Herring theory. More appropriate in those
cases is Conwell-Weisskopf theory, which is not discussed here.
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