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The Empirical Pseudopotential Method 

The concept of pseudopotentials was introduced by Fermi [1] to study high-lying atomic 

states. Afterwards, Hellman proposed that pseudopotentials be used for calculating the energy 

levels of the alkali metals [2]. The wide spread usage of pseudopotentials did not occur until the 

late 1950s, when activity in the area of condensed matter physics began to accelerate. The main 

advantage of using pseudopotentials is that only valence electrons have to be considered. The 

core electrons are treated as if they are frozen in an atomic-like configuration. As a result, the 

valence electrons are thought to move in a weak one-electron potential. 

The pseudopotential method is based on the orthogonalized plane wave (OPW) method 

due to Herring. In this method, the crystal wavefuntion kψ  is constructed to be orthogonal to the 

core states. This is accomplished by expanding kψ  as a smooth part of symmetrized 

combinations of Bloch functions kϕ , augmented with a linear combination of core states. This is 

expressed as 

 
∑ Φ+=

t
ttb ,, kkkk ϕψ ,                                               (1) 

where tb ,k  are orthogonalization coefficients and t,kΦ  are core wave functions. For Si-14, the 

summation over t in Eq. (1) is a sum over the core states 1s2 2s2 2p6. Since the crystal wave 

function is constructed to be orthogonal to the core wave functions, the orthogonalization 

coefficients can be calculated, thus yielding the final expression 
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To obtain a wave equation for kϕ , the Hamiltonian operator  
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is applied to Eq. (2), where VC  is the attractive core potential, and the following wave equation 

results 
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where VR  represents a short-range, non-Hermitian repulsion potential, of the form 
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Et in Eq. (5) represents the atomic energy eigenvalue, and the summation over t represents a 

summation over the core states.  The result given in Eq. (4) can be thought of as wave equation 

for the pseudo-wave function, kϕ , but the energy eigenvalue E corresponds to the true energy of 

the crystal wave function kψ . Furthermore, as a result of the orthogonalization procedure, the 

repulsive potential VR, which serves to cancel the attractive potential VC, is introduced into the 

pseudo-wave-function Hamiltonian. The result is a smoothly varying pseudopotential VP = VC + 

VR.  This result is known as the Phillips-Kleinman cancellation theorem [3] which provides 

justification why the electronic structure of strongly-bound valence electrons can be described 

using a nearly-free electron model and weak potentials. 

To simplify the problem further, model pseudopotenials are used in place of the actual 

pseudopotential. Figure 1 summarizes the various models employed. Note that the 3D Fourier 

transforms (for bulk systems) of each of the above-described model potentials are of the 

following general form 
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This q-dependent pseudopotential is then used to calculate the energy band structure along 

different crystallographic directions, using the procedure outlined in the following section. 



 
(a)   Constant effective potential in the core region: V ( r ) 
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(b)   Empty core model: V ( r ) 
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(c)  Model potential due to Heine and Abarenkov: 
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(d)  Lin and Kleinman model potentials: 
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Figure 1. Various model potentials. 

 

Description of the Empirical Pseudopotential Method 
 

Recall from the previous section that the Phillips-Kleinman cancellation theorem 

provides a means for the energy band problem to be simplified into a one-electron-like problem. 

For this purpose, Eq. (4) can be re-written as 
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where VP is the smoothly varying crystal pseudopotential. In general, VP is a linear combination 

of atomic potentials, Va, which can be expressed as summation over lattice translation vectors R 

and atomic basis vectors τ to arrive at the following expression 
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To simplify further, the inner summation over τ can be expressed as the total potential, V0, in the 

unit cell located at R. Eq. (8) then becomes 

 
( ) ( )∑ −=

R

Rrr 0VVP  .                                               (8) 

Because the crystal potential is periodic, the pseudopotential is also a periodic function and can 

be expanded into a Fourier series over the reciprocal lattice to obtain 
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where the expansion coefficient is given by 
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and Ω is the volume of the unit cell. 

To apply this formalism to the zincblende lattice, it is convenient to choose a two-atom 

basis centered at the origin (R = 0).  If the atomic basis vectors are given by τ1 = τ = -τ2, where τ, 

the atomic basis vector, is defined in terms of the lattice constant a0 as τ = a0(1/8,1/8,1/8), V0(r) 

can be expressed as 

 ( ) ( ) ( )τrτrr 210 ++−= VVV
 ,                                     (11) 

where V1 and V2 are the atomic potentials of the cation and anion. Substituting Eq. (12) into Eq. 

(11), and using the displacement property of Fourier transforms, V0(r) can be recast as 
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Writing the Fourier coefficients of the atomic potentials in terms of symmetric (VS(G)=V1+V2)) 

and antisymmetric (VA(G)=V1-V2)) form factors, V0(G) is given by 



 ( ) ( ) ( )0 G cos G τ (G) sin G τ (G)S AV V i V= ⋅ + ⋅  ,                                              (13) 

where the prefactors are referred to as the symmetric and antisymmetric structure factors. The 

form factors above are treated as adjustable parameters that can be fit to experimental data, hence 

the name empirical pseudopotential method. For diamond-lattice materials, with two identical 

atoms per unit cell, the VA=0 and the structure factor is simply ( )τG ⋅cos
. For zinc-blende lattice, 

like the one in GaAs material system, VA≠0 and the structure factor is more complicated. 

Now with the potential energy term specified, the next task is to recast the Schrödinger 

equation in a matrix form.  Recall that the solution to the Schrödinger wave equation in a 

periodic lattice is a Bloch function, which is composed of a plane wave component and a cell 

periodic part that has the periodicity of the lattice, i.e. 
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By expanding the cell periodic part uk(r) of the Bloch function appearing in Eq. (15) into Fourier 

components, and substituting the pseudo-wave function kϕ  and potential V0 into the Schrödinger 

wave equation, the following matrix equation results 
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The expression given in Eq. (16) is zero when each term in the sum is identically zero, which 

implies the following condition 
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In this way, the band structure calculation is reduced to solving the eigenvalue problem specified 

by Eq. (17) for the energy E. As obvious from Eq. (15), ( )G ′U  is the Fourier component of the 

cell periodic part of the Bloch function.  The number of reciprocal lattice vectors used 

determines both the matrix size and calculation accuracy. 

The eigenvalue problem of Eq. (17) can be written in the more familiar form UHU E= , 

where H is a matrix, U is a column vector representing the eigenvectors, and E is the energy 



eigenvalue corresponding to its respective eigenvector. For the diamond lattice, the diagonal 

matrix elements of H are then given by 
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for i = j, and the off-diagonal matrix elements of H are given by 

 ( ) ( )[ ]τGGGG ⋅−−= jijiSji VH cos, ,                            (18) 

for i ≠ j. Note that the term VS(0) is neglected in arriving at Eq. (19), because it will only give a 

rigid shift in energy to the bands. The solution to the energy eigenvalues and corresponding 

eigenvectors can then be found by diagonalizing matrix H. 

 

Implementation of the Empirical Pseudopotential Method for Si and Ge 

For a typical semiconductor system, 137 plane waves are sufficient, each corresponding 

to vectors in the reciprocal lattice, to expand the pseudopotential. The reciprocal lattice of a face-

centered cubic (FCC), i.e. diamond or zinc-blende structure, is a body-centered cubic (BCC) 

structure.  Reciprocal lattice vectors up to and including the 10th-nearest neighbor from the origin 

are usually considered which results in 137 plane waves for the zinc-blende structure.  The 

square of the distance from the origin to each equivalent set of reciprocal lattice sites is an 

integer in the set |G2| = 0, 3, 4, 8, 11, 12, … where |G2| is expressed in units of (2π/ao)
2.  Note 

that the argument of the pseudopotential term VS in Eq. (19) is the difference between reciprocal 

lattice vectors.  It can be shown that the square of the difference between reciprocal lattice 

vectors will also form the set of integers previously described.  This means that VS is only needed 

at discrete points corresponding to nearest-neighbor sites.  The pseudopotential, on the other 

hand, is a continuous quantity.  Therefore, its Fourier transform VS(q) is also a continuous 

function (see Figure 2).  The points corresponding to the first three nearest neighbors are also 

indicated on this figure.  
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Figure 0. Fourier transform of the pseudopotential. (Note that 'GG −=q  ). 

 

Recall that the pseudopotential is only needed at a few discrete points along the V(q) 

curve.  The discrete points correspond to the q2-values that match the integer set described 

previously.  There is some controversy, however, regarding the value of VS as q vanishes.  There 

are two common values seen in the literature: V1(0)= -3/2EF and V1(0) = 0.  In most cases, the 

term VS(0) is ignored because it only gives a rigid shift in energy to the bands.  The remaining 

form factors needed to compute the band structure for non-polar materials correspond to q2 = 3, 

8, and 11. For q2 = 4, the cosine term in Eq. (19) will always vanish.  Furthermore, for values of 

q2 greater than 11, V(q) quickly approaches zero.  This comes from the fact that the 

pseudopotential is a smoothly varying function, and only few plane waves are needed to 

represent it. If a function is rapidly varying in space, then many more plane waves would be 

required. Another advantage of the empirical pseudopotential method is that only three 

parameters are needed to describe the band structure of non-polar materials. 

Table 1:  Local Pseudopotential Form Factors. 
 

Form Factor 
(Ry) 

Si Ge 

V3 -0.2241 -0.2768 

V8 0.0551 0.0582 



V11 0.0724 0.0152 

 

Using the form factors listed in Table 1, where the Si form factors are taken from [4] and the Ge 

form factors are taken from [5], the band structures for Si and Ge are plotted in Figure 3 [6].  

Note that spin-orbit interaction is not included in these simulations. The lattice constants 

specified for Si and Ge are 5.43Å and 5.65Å, respectively.  Si is an indirect band gap 

semiconductor.  Its primary gap, i.e. minimum gap, is calculated from the valence band 

maximum at the Γ-point to the conduction band minimum along the ∆ direction, 85% of the 

distance from Γ to X.  The band gap of Si is calculated to be Eg
Si = 1.08 eV, in agreement with 

experimental findings.  Ge is also an indirect band gap semiconductor.  Its band gap is defined 

from the top of the valence band at Γ to the conduction band minimum at L.  The band gap of Ge 

is calculated to be Eg
Ge = 0.73 eV.  The direct gap, which is defined from the valence band 

maximum at Γ to the conduction band minimum at Γ, is calculated to be 3.27 eV and 0.82 eV for 

Si and Ge, respectively.  Note that the curvature of the top valence band of Ge is larger than that 

of Si.  This corresponds to the fact that the effective hole mass of Si is larger than that of Ge.  

Note that the inclusion of the spin-orbit interaction will lift the triple degeneracy of the bands at 

the Γ point, leaving doubly-degenerate heavy and light-hole bands and a split-off band moved 

downward in energy by few 10's of meV (depending upon the material under consideration). 

 

Figure 2. Left panel: band structures of silicon. Right panel: band structure of germanium. 

 

In summary, the local empirical pseudopotential method described in this section is rather 

good for an accurate description of the optical gaps. However, as noted by Chelikowsky and 



Cohen [7], when these local calculations are extended to yield the valence-band electronic 

density of states, the results obtained are far from satisfactory. The reason for this discrepancy 

arises from the omission of the low cores in the derivation of the pseudopotential in the previous 

section.  This, as previously noted, allowed the usage of a simple plane wave basis. To correct 

for the errors introduced, an energy-dependent non-local correction term is added to the local 

atomic potential. This increases the number of parameters needed but leads to better convergence 

and more exact band-structure results [8,9]. 
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