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Relaxation-time approximation 

Analytical solutions of the Boltzmann equation are possible only under very restrictive 

assumptions [1]. Direct numerical methods for device simulation have been limited by the 

complexity of the equation, which in the complete 3-D time-dependent form requires seven 

independent variables for time, space and momentum. In recent times, more powerful 

computational platforms have spurred a renewed interest in numerical solutions based on the 

spheroidal harmonics expansion of the distribution function [2]. To-date, most semiconductor 

applications have been based on stochastic solution methods (Monte Carlo), which involve the 

simulation of particle trajectories rather than the direct solution of partial differential equations.  

Most conventional device simulations are based on approximate models for transport 

which are derived from the Boltzmann equation, coupled to Poisson's equation for self-

consistency. In the simplest approach, the relaxation time approximation is invoked, where the 

total distribution function is split into a symmetric term in terms of the momentum (which is 

generally large) and an asymmetric term in the momentum (which is small). In other words, 

 ( , , ) ( , , ) ( , , )r k r k r kS Af t f t f t= + . (1) 

Then, for non-degenerate semiconductors (1 - f) ≈ 1, the collision integral may be written 
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We now consider two cases: 

(a) Equilibrium conditions: 
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(b) Non-equilibrium conditions when 0Af ≠ . In this case, we must consider two different 

situations: 



- Low-field conditions, where Sf  retains its equilibrium form with C LT T= . In this case 

( ) 0S coll
f t∂ ∂ =

. 

- High-field conditions when C LT T≠  and Sf  does not retain its equilibrium form. In 

this case ( ) 0S coll
f t∂ ∂ ≠

. 

In all of these cases, a plausible form for the term ( )A coll
f t∂ ∂

 is 
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where fτ
 is a characteristic time that describes how the distribution function relaxes to its 

equilibrium form. With the above discussion, we may conclude that 

- At low fields: 
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- At high fields: 
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To understand the meaning of the relaxation time, we consider a semiconductor in which there 

are no spatial and momentum gradients. With the gradient terms zero, the BTE becomes 
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The solution of this first-order differential equation is 
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This result suggests that any perturbation in the system will decay exponentially with a 

characteristic time constant fτ
. It  also suggests that the RTA is only good when [ ]0(0)f f−

 is 

not very large. Note that an important restriction for the relaxation-time approximation to be 

valid is that fτ
 is independent of the distribution function and the applied electric field. 

 

Solving the BTE in the Relaxation Time Approximation 

Let us consider the simple case of a uniformly doped semiconductor with a constant 

electric field throughout. Since there are no spatial gradients, 0r f∇ = . Under steady-state 

conditions we also have  0f t∂ ∂ = . With the above simplifications, the BTE reduces to  
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For parabolic bands and choosing the coordinate system such that the electric field is along the z-

axis, one can expand the distribution function into Legendre polynomials 

0
1

( , ) ( , ) ( ) (cos )n n
n

f z p f z p g E P θ
∞

=
= +∑

 (8) 

where 0 1P = , 1 cosP θ= , 
23 1

2 2 2cosP θ= − , … . In the above expressions, θ  is the angle between 

the applied field (along the symmetry axis), and the momentum of the carriers. For sufficiently 

low fields, we expect that only the lowest order term is important, so that 

0 1 0( ) ( ) ( ) cos ( ) ( )Af p f p g p f p f pθ≅ + = + . (9) 

Substituting the results on the LHS of the BTE and using parabolic dispersion relation gives 
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where, as previously noted θ  is the angle between the electric field and v. 

 We now consider the collision integral on the RHS of the BTE. Substituting the first 

order approximation for f(p) gives 
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where in the last line of the derivation we have used the principle of detailed balance. We can 

further simplify the above result, by considering the following coordinate system: 
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Figure 1. Coordinate system used in the rest of the derivation. 

Within this coordinate system, we have: 
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which leads to: 
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The integration over φ will make this term vanish, and under these circumstances we can write: 
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To summarize: 
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Note that for the relaxation approximation to be valid, the term in the brackets inside the 

summation sign should not depend upon the distribution function. 

•  Consider now the case of elastic scattering process. Then 
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Hence, when the scattering process is ELASTIC, the characteristic time fτ
 equals the 

momentum relaxation time. 

•  If the scattering process is ISOTROPIC, then S(k,k’) does not depend upon α . In this 

case, the second term in the square brackets averages to zero and 
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Thus, in this case, the characteristic time is the scattering time or the average time 

between collision events. 

To summarize, under low-field conditions, when the scattering process is either isotropic or 

elastic, the collision term can be represented as 
/ ( )A ff kτ−

, where in general 
( )f kτ

 is the 

momentum relaxation time that depends only upon the nature of the scattering process. 

Following these simplifications, the BTE can thus be written as 
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The distribution function is, thus, equal to 
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To further investigate the form of this distribution function, we use 
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The second term of the last expression resembles the linear term in the Taylor series expansion 

of f(k). Hence, we can write 
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To summarize, the assumption made at arriving at this last result for displaced Maxwellian form 

for the distribution function is that the electric field E is small. Hence, the displaced Maxwellian 

is a good representation of the distribution function under low-field conditions 
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