











| NON-CLASSICAL CMOS DEVICES |                                                                        |                                                                       |                                                                                                                                              |        |                                                                                                                     |  |  |  |  |
|----------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Device                     | Ultrathin Body SOI                                                     | Band-Engineered<br>Transistor                                         | Vertical<br>Transistor                                                                                                                       | FinFET | Double-Gate<br>Transistor                                                                                           |  |  |  |  |
| Concept                    | Fully-depleted<br>SOI                                                  | SiGe or Strained Si<br>Channel; bulk<br>Si or SOI                     | Double-gate or surround-gate structure                                                                                                       |        |                                                                                                                     |  |  |  |  |
| Application/Driver         | Higher performance, higher transistor density, lower power dissipation |                                                                       |                                                                                                                                              |        |                                                                                                                     |  |  |  |  |
| Advantages                 | Improved<br>subthreshold<br>slope; V <sub>T</sub> con-<br>trollability | Higher drive<br>current; com-<br>patible with<br>bulk Si and SOI      | Higher drive current; Improved subthreshold slop independent gate length  Higher drive current; Improved short-channel e (SCE); stacked NAND |        | bthreshold slope;<br>short-channel effect                                                                           |  |  |  |  |
| Scaling Issues             | Si film thickness, gate stack;<br>worse SCE<br>than bulk CMOS          | High mobility film<br>thickness (SOI); gate<br>stack; integratability | Si film thickness; gate stack; integratability; process complexity; accurate TCAD including quantum-mechanical (QM) effects                  |        | Gate alignment; Si<br>film thickness;<br>gate stack;<br>integratability;<br>process<br>complexity;<br>accurate TCAD |  |  |  |  |
| Design<br>Challenges       | Device characterization;<br>compact model and<br>parameter extraction  | Device<br>characterization                                            | Device characterization; PD versus FD; compact model and parameter extraction; applicability to mixed signal applications                    |        |                                                                                                                     |  |  |  |  |

## The Emergence of Computational Electronics ... As devices shrink into the nanometer scale, the trial and error approach is becoming more and more expensive As a result, the Computational Electronics have emerged as an important field in the device manufacturing process as it can offer: The possibility to test hypothetical devices which has not yet been manufactured Observation of phenomena that can not be measured on real devices

## nanoHUB.org What is Computational Electronics? online simulations and more • Computational electronics Customer Need is related to, but different from TCAD (technology for Process Simulation Computational computer-aided design). Electronics Device Simulation • The relationship between Parameter Extraction the various simulation Circuit Level Simulation design steps needed to achieve certain customer need is summarized on the figure.







|                     | ne simulations and more |               |                | Quantum Transport Simulate |                 |  |  |  |
|---------------------|-------------------------|---------------|----------------|----------------------------|-----------------|--|--|--|
|                     |                         |               |                |                            |                 |  |  |  |
|                     | $L << l_{e-ph}$         |               |                | $L \sim l_{e-ph}$          | $L >> l_{e-ph}$ |  |  |  |
|                     | $L < \lambda$           | $L < l_{e-e}$ | $L >> l_{e-e}$ |                            |                 |  |  |  |
| Transport Regime    | Quantum                 | Ballistic     | Fluid          | Fluid                      | Diffusive       |  |  |  |
| Scattering          | Rare                    | Rare          | e-e (Many), e- | oh (Few)                   | Many            |  |  |  |
| Model:              |                         |               |                |                            |                 |  |  |  |
| Drift-Diffusion     |                         |               |                |                            |                 |  |  |  |
| Hydrodynamic        | Quantum H               | ydrodynamic   |                |                            |                 |  |  |  |
| Monte Carlo         |                         |               |                |                            |                 |  |  |  |
| Schrodinger/Green's |                         |               |                |                            |                 |  |  |  |
| Functions           | Wave                    |               |                |                            |                 |  |  |  |
| Applications        | Nanowires,              | Ballistic     |                |                            |                 |  |  |  |
|                     | Superlattices           | Transistor    | Current IC's   | Current IC's               | Older IC's      |  |  |  |
|                     |                         |               |                |                            |                 |  |  |  |
|                     |                         |               |                |                            |                 |  |  |  |
|                     |                         |               | Network fo     |                            | (a) (c)         |  |  |  |

