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heat flux and thermal conductivity

1) Electrons can carry heat, and we have seen how to
evaluate the electronic thermal conductivity.

f q (E_EF)2 h
I} =70, — 1, dT Jdx k=] = o'(E)dE
L
J1=nd, —k,dT_/dx K, =K,— TSSO
- )

2) In metals, electrons carry most of the heat.

3) But in semiconductors and insulators, most of the heat
IS carried by lattice vibrations (phonons).
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lecture 9

: N\

39 =7J, -, dT, /dx

J2 =—x_dT, /dx
- /

This lecture is a brief introduction to phonon transport. We
also discuss the differences between electron and phonon
transport (i.e. why does the electrical conductivity vary over
>20 orders of magnitude while the thermal conductivity only
varies only over ~3 orders of magnitude?)
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electron dis

Electrons in a solid behave as both
particles (quasi-particles) and as waves.

Electron waves are descrLbed by a
“dispersion:” E (k) _ ha)(k)
Because the crystal is periodic, the

dispersion is periodic in k (Brillouin
zone).

Particles described by a “wavepacket.”

The “group velocity” of a wavepacket is
determined by the dispersion:

0, (K)=V,E(K)/n
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phonon dispersion

Lattice vibrations behave both as
particles (quasi-particles) and as waves.

Lattice vibrations are described by a
“dispersion:” _ .

" o(d)=E(d)/n
Because the crystal is periodic, the
dispersion is periodic in k (Brillouin zone)

Particles described by a “wavepacket.”

The “group velocity” of a wavepacket is
determined by the dispersion:

O, (q) - an)(q)

Einstein

\ Debye
N 4
BW
| | v
—r/a q, 7z/a




mass and spring
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general features of phonon dispersion

LO and TO
degenerate atq =0
for non polar

~

low group velocity

\
I

semiconductors Wy
TO (2)
/ LA (1)
® =04 //
vs=\c/p [Ty | TA(2)
> g
7/ a LO and LA
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real dispersion

{ TO (2)
TA (2)
0 02 04 06 08 1 % 02 naneos 1
k, (x7/a) d, (x7/a)
note the different energy scales!
electrons in Si (along [100]) phonons in Si (along [100])
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wavelengths: electrons vs. phonons

h drxho
A8 )= ~ 60A 2Py = 2228 sBA
%) J3mk.T, (%") 3k, T,
(m"=m,, T, =300K) (vs ~5000 m/s)

(see appendix for derivation)
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general model for electronic conduction

From Lecture 2:

=23 [T, ()M, (E)(f, - f,)E

channel

?f I

1

1
e(E—EFl)/kBTL 41 fZ(E) = e(E—EF1+qV)/kBT,_ 11

E(E):
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for phonon conduction

Thermal reservoir
In equilibrium at
temperature, T ;.

1
eha)/kBTLl _ 1

n (hew) =

channel characterized by
a dispersion

\\Z
channel

Thermal reservoir
In equilibrium at
temperature, T ..

1

n2 (h(()) = eha)/kBT,_Z

14

\%
P

(E)M, (E)(f,-f,)dE = Q=?
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heat flux

Assume ideal
contacts, so that the
transmission
describes the
transmission of the
channel.

15

=23, ()M, (E)(f,- f,)E

TLl channel
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on,

0

near-equilibrium heat flux

1

Q :Fj(ha))Tph (ho)M ,, (he)(n,—n,)d (heo)

on
n, ~n +—=AT,

1

oT, - oT,

ha) eha)/kBTL
oT, 4T, {ehw/kBTL —1} BRUAK (e _1)2

1 } 3 1 eha)/kBTL
eha)/kBTL -1 - kBTL (ehw/kBTL _1)2

on, _ 0 {
o(hw) o(hw)
on, _ho
or, T,

[_a?;;)] (nl_nZ)z_Z?L_a?;;)JATL /[ 2oL ]
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lattice thermal conductance

kT, ho || on,
Q=-K,AT, K, _Tijh(ha))Mph (ha)){kBTJ{ 5(h0)

Recall the electrical conductance; 7/

G :2—22de (E)M, (E)(—%)dE

“window function™:

W, (E)=(—f,/cE) [ (~of,/0E)dE =1

—00
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lattice window function
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heat conduction

1) Fourier's Law of heat conduction: Q =-K AT,

ﬂzkéTL

2) Thermal conductance: K, = 2

j T (h0)M o, (ho)W,, (ho)d (ho)

21,2
3) Quantum of heat conduction: 7Kg Ty

2
3( n on
4) Window function for phonons: W, (ha)){ Z(k 10')] (a(h;)]}
T B'L
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electrical conduction

1) Electrical current: [=GAV

2) Electrical conductance: G= %j T, (E)M. (E)W, dE
3) Quantum of electrical conduction: E
h

4) Window function for electrons: W, (E)= (-0 /0E)
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W (ev?d)

21

window functions: electrons vs. phonons

N
o

N
o

Electrons Phonons
1
50K . °0]\
~ 50K
\I-". g 7
|'| 3 40 "
|| — )
¥ = |
|
300K Iy 20 v AS00K
o e~
O ~
0.1 0 0.1 0 0.1 0.2
E-E, (eV) heo (V)

M/e/(E): (_878/55)
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diffusive heat transport (3D)

Q=-K AT, (Watts)
2k2-|-
K ==+ [T, (F0)M , (h0)W,, (heo)d (hw)  (Watts/K)
A (7 A (7
T, (ho)= 0 (10) - 0 (10) (diffusive phonon transport)
Ao (hew)+ L
M, (ho)x A (large, 3D sample)

o

AT 0 aT, L
LL ‘])?:Z__KL x KL:KL(/_AJ (W/m-K)
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diffusive heat transport (3D)

IEEEEEE___—_—_—_—
JP=—K,—= (Watts/ m?)

M _ (7
—B LA, (o) ph'g o)

W, (hw)d (hw)  (Watts/m-K)

d(F”/ q) (Amperes / m?)
ax

J =0

X

o= % | ze,(E)M#(E) W, (E)de  (1/Ohm-m)
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thermal conductivity again
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diffusive heat transport (3D)

JP =K, % (Watts / m?)
KT,
Ky = i 35 <Mp/7/A><</lph>> (Watts/m-K)
J=0o d(F”/ q) (Amperes / m?)
ax
o= %( M., | A{(2,)) (1/0hm-m)
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diffusive heat transport (3D)

ar,
J7 = _KLT; (Watts / m?)

j/lph (ho) M phﬁ\hw)wph (hw)d (hw)  (Watts/m-K)

To evaluate the lattice thermal conductivity, we must specify:

1) the mean-free-path for phonon scattering
2) the number of channels per unit area for phonon conduction.

Before we do that...... the lattice thermal conductivity is often related to
the lattice specific heat. Let's see how that works.

27 Lundstrom and Jeong 2011



28

specific heat

I
The total energy (per unit volume) of the lattice vibrations is:

E, = | (@)D, (ho)n,(fho)d(ho)

o —3

where D, is the phonon density of states per unit volume.

The specific heat is the change in energy per degree change in T, :

ok _ 9 @ @ @ )
C. = 2= 2 (o), (h0)r (1) (10

o3

on, (hw)

c, = (1), (n0) ) a1
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Q
O 8

21,2 0
7 KT,

(1), (o)

specific heat (i)

on, (ho)

]d(haﬁ Recall:

L

D, (ho)W, (hw)d (heo)
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specific heat and thermal conductivity

7Z'2kéTL
3

c, =25 (D (o)W, (ho)d (7o)

21,2 M h
K, = ;E;TL Ao (M) ph’g a))th (hew)d (7o)

one can show....(see appendix)
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specific heat and thermal conductivity

7Z'2k§TL
3h
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~
O =3

[ (1) () (o)

0, D W d(ha))

j D,W,,.d (7o)
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Why did we do this?

Because this expression can be simply derived from kinetic theory and is
widely-used.

But, we now have a precise definition of the mfp and average phonon
velocity.

32
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effective mass model for electrons

As long as the BW >> kT, the
effective mass model generally

I

I
/\q works ok.

| This is the typical case for

| electronic dispersions. Only
states near the bottom of the
conduction band or top of the
Lk valence band matter, and these

regions can be described by an eff
mass model.
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Debye model for acoustic phonons

/ Linear dispersion model

@ =Up(

3(hw) QB (no./3)

Doy (h0) = 27% (hvp)

3( a))ZZA (no./3)

2 hog

M o (ha))z

If acoustic phonons near g =0
mostly contribute to heat transport,
Debye model works work well.
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caution

Most textbooks derive the phonon DOS in frequency
space, not energy space as we have.

0, (0) =520 (10/H2)  Dy(ho)=— )

o 2.3
21 v,

Lundstrom and Jeong 2011
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Debye model: cutoff frequency / wavevector

38

For phonons, BW ~ kT, (recall slide 10)

No. of states in a band = N.

- "o 3(hco)2 N
D (hw)d(/hw)= d(/hw)=3—
E[ ph( ) ( ) E‘; 27[3 (hUD )3 ( ) Q
67[2N 1/3
haoy =ho, [ a5 ] =KgT,




Debye model: cutoff frequency / wavevector

KeTp =hoog

Debye model valid when T, << T,
(generally means T, << 300K)

39



Debye model: thermal conductivity

K =2 [ A, (h00) i p“/(fw)wph (ho)d (ho)

67N ) 3ha? 3( hw Y[ on
Wp =V M = W (ho)=<{— — L
D D ( Q j ph (a)) 872-20[2) ph( a)) 7z_2 (kBTL] ( a(ha)))

See:
J. Callaway, “Model for lattice thermal conductivity at low
temperatures,” Phys. Rev., 113, 1046-1051, 1959.

M.G. Holland, “Analysis of lattice thermal conductivity,” Phys. Rev.,
132, 2461-2471, 1963.
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limitation of Debye model

21,2
7 kg T, M ph
2 20 KL= ’Iph th d (ha))
||| silicon 3h j A
\ v~ Debye(Si
i ph full band (Si)
th - == 50K
— 300 K
Window function spans the entire
BZ at room temp.

Debye model works well at very
temperatures below 50 K.
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effective mass model for electrons

Parabolic dispersion assumption for electrons works well at room

temperature.
electrons in Si

0.4— 20
1y [--=- M, EMA
: 1 |—— M, full band
| === W,50K 15
e 031 | — W, 300K .
| —
% 02 i 3
S 0.2 10 =
s 0.1y | ! 5
" [

0 0.1 0.2
E (eV)
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scattering

Electrons scatter from:

1) defects

-e.g. charged impurities, neutral

iImpurities, dislocations, etc.
2) phonons
3) surfaces and boundaries
4) other electrons
Scattering rates are computed

from Fermi's Golden Rule.
(Lecture 6)

Phonons scatter from:

1) defects
-e.g. impurities, dislocations,
Isotopes, etc.

2) other phonons

3) surfaces and boundaries

4) electrons (“phonon drag”)

Scattering rates are computed
from Fermi’'s Golden Rule.
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phonon-phonon scattering

To compute the phonon dispersion, we expand the bonding energy in a
Taylor series expansion. To first order, the potential energy is harmonic:

1
U :Ek(x—xo)2

To this order, the normal modes are independent, there is no scattering.
Higher order terms, give an anharmonic potential and scattering
electrons from one mode to another.

= 1) momentum conservation:
4, v )
hqs - hql + hqz

/\ i) energy conservation:

q,C() *,a)
o o ho, =ho, +ho,

little effect on thermal conductivity!
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N and U processes

G, o

Normal (N) process
(momentum conserved)
Little effect on k.

High g implies
short wavelength.
Unphysical
because
wavelength would
be less than lattice
spacing.

Umklapp (U) process

(momentum not conserved)

Lowers K.



U processes

Need population of large g states for
U-scattering. Need high T, so that
window function is broad and large g
states are populated.

N 1
0 eha)/kBT,_ 1

" 21— ha/k,T,

kBTL
hao

n, =

1

Ty

47
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scattering summary

— + + ﬂ,ph (ha)) oV, (ha))rph (ha))

1) point defects and impurities:  1/7, (hw)x o*  "Raleigh scattering”

2) boundaries and surfaces:  1/z, (hw) < v, (hw)/t

3) Umklapp scattering: 1/Tu (hew)oc T, {1/% (he)oc g To/PTLT 37 }
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1) measured vs. calculated k, (T,) for silicon

T (K)

C. Jeong, S. Datta, M. Lundstrom, “Full Dispersion
vs. Debye Model Evaluation of Lattice Thermal
Conductivity with a Landauer approach,” J. Appl.
Phys. 109, 073718-8, 2011.

50
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population of modes vs. T,

(M /A)

N

/OC TLS

more modes

H
N
w
v

T (K) T -

/8= [ 22y o) o)
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mean-free-path vs. T,

2 Limited by boundaries
ph
10° — . A / defect scattering important
3
107 dominated by phonons
(U-processes)
102_ /
1
10 . —— 1 -
10° 10" 10° 10° g
T (K) T -
1 1 1 1

A (h0) Ao (7o) A (he) | A, (7o)
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temperature-dependent thermal conductivity

10 :
—cal. |
. O expt]
¢ 10°
AV i 3
T'E / phonon scattering
by U-processes
E , / y p
Mg' 10 V%
. Si
10" 10" 10° 10°
population of T (K)
modes and 227
boundary scatterin _ T Rgl
y 9] k=T (M ph>><<<,1ph >>

53
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Il) electron vs. phonon conductivities

The expressions look similar:

2

KL =%<Mph/A><</lph>> 0:2%<Me,/A><(ﬂel>>

In practice, the mfps often have similar values. The difference is in <M>.

For electrons, the location E¢ can vary <M> over many orders of
magnitude.

But even when E¢ = E, <M> is much smaller for electrons than for
phonons because for electrons, the BW >> kg T, which for phonons, BW ~
kgT,. Most of the modes are occupied for phonons but only a few for
electrons.

54
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guantized heat flow

Both the charge and heat currents are quantized.

2k2T
K, =52 [T (ho)My, (h)W,, (Ro)d (heo)
2k2T
~ %Tph (0)M, (0) at low temp

Nanostructure at low temperatures can have nearly ballistic phonon
transport with a small number of modes occupied. See the paper by
Schwalb, et al. for experimental confirmation of quantized heat flow.

K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes,
“Measurement of the quantum of thermal conductance,” Nature, 404,
974-977, 2000.
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summary

1) Our model for electrical conduction can readily be extended to
describe phonon transport. The mathematical formulations are very
similar.

2) Just as for electrons, phonon transport is quantized.

3) The difference BW'’s of the electron and phonon dispersions has
Important consequences. For electrons, a simple dispersion
(effective mass) often gives good results, but for phonons, the
simple dispersion (Debye model) is not very good.

4) There is no Fermi level for phonons, so the lattice thermal
conductivity cannot be varied across many orders of magnitude like
the electrical conductivity.
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for more about heat transport
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M.G. Holland, “Analysis of lattice thermal conductivity,” Phys. Rev.,
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guantized thermal transport

K. Schwab, E.A. Henriksen, J.M. Worlock, and M.L. Roukes,
“Measurement of the quantum of thermal resistance,” Nature,
404, 974-977, 2000.
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for more about this lecture

C. Jeong, S. Datta, M. Lundstrom, “Full Dispersion vs. Debye
Model Evaluation of Lattice Thermal Conductivity with a Landauer
approach,” J. Appl. Phys. 109, 073718-8, 2011.
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