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diffusive transport in 2D
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evaluating the transport parameters

Only two quantities are needed: M (E) and T (E)or A(E)

For a 2D conductor with parabolic energy bands:

Mo (E)=WM,, (E)=W sz*g{i_EC)

For a 1D or 2D conductor with parabolic energy bands M(E)
IS given by different expressions. T(E) depends on
dimensionality and the particular scattering mechanisms that

dominate.
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nonparabolic energy bands in 1D, 2D, or 3D

What if the bandstructure is non-parabolic?

Graphene is a good example, because E(k) is simple,
but distinctly non-parabolic. It is also a material that is of
great interest currently.
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2011 Nobel Prize in Physics

4% The Nobel Prize in Physics 2010
.I Andre Geim, Konstantin Novoselov

ik

R

Al

Andre Geim Konstantin
Novoselov

The Nobel Prize in Physics 2010 was awarded jointly to Andre Geim and
Konstantin Novoselov “for groundbreaking experiments regarding the two-
dimensional material graphene”

Photos: Copyright @ The Nobel Foundation
"The Nobel Prize in Physics 2010". Nobelprize.org. 9 Jun 2011
http://nobelprize.org/nobel_prizes/physics/laureates/2010/
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graphene

Graphene is a one-atom-thick planar carbon sheet with a
honeycomb lattice.

source: CNTBands 2.0 on nanoHUB.org

Graphene has an unusual bandstructure that leads to
Interesting effects and potentially to useful electronic devices.
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graphene bandstructure

E(k) Brillouin zone

Datta: ECE 495N — fall 2008:
https://nanohub.org/resources/5710 (Lecture 21)
https://nanohub.org/resources/5721 (Lecture 22)



simplified graphene bandstructure near E =0

We will use a very simple description of the graphene bandstructure,
which is a good approximation near the Fermi level.

E (k)

N

E(k)=+hvck =+hoe k] +k;

1 oE
U(k) :%E:UF

v(k)=v ~1x1 Dcm/s
g, =2 (valley degeneracy)

“neutral point” (“Dirac point”)

We will refer to the E- > 0 case, as
“n-type graphene” and to the E- <0

case as “p-type graphene.”



electron wavefunction
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two-component wavefunction

. i(kex+ky )
. v(xy)=( |e
1 el

s=sgn(E) 6 =arctan(k, /k,)

K, backscattering is supresed

Lundstrom 2011



outline

10.1 Graphene

10.2 Density of states and carrier density
10.3 Number of modes and conductance
10.4 Scattering

10.5 Conductance vs. carrier density

10.6 Discussion

10.7 Summary

Lundstrom 2011

14



density-of-states

27 kdk
N (k) dk= 2

( ) (Zﬂ/LX)(Zﬂ/Ly)X v
N (k)dk = Ag, <K

T

E(k)=nok kdk=

EdE
(7o)

2



density-of-states
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carrier density

m

D(E) | A n(E.)= | D(EYE (E)E

E
/ : T, = 0 K is a good approximation

for graphene — even at 300 K.

D(E 7
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0 , .
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number of modes

Recall from Lecture 2:

for graphene:
D(E) = 2|E|/7h*;

(v1)= ok
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DOS vs. modes
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DOS vs. modes (parabolic)
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conductance
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expected results: G vs. Ecat T, = 0K

G vs. E,

T (E: ) = constant

EF

M (E) « [E|

E- >0
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expected results: G vs. ng at T, = 0K
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expected results: T, > 0K

_
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some key equations (T, = OK)

6(0K) = 2T (E M E,)

M (E.) =W 2E, /zho,

20 AE) | 2E

G(0K)= h A(E)+L  zho,

Describes the conductance of the
conduction (E > 0) or valence (E <0)
bands.

(For T, > 0, the total conductance is
the sum of the two.)

o, Is the “sheet conductance.”

Aw  A(Ep) L 26
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conductance and scattering

G(OK):qu AE:) Y\ 2E:
h (A(E)+L )\ #ho,

A(E) is the mean-free-path for backscattering, which is determined
by the dominant scattering processes.

Lundstrom 2011
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scattering

For many scattering mechanisms (e.g. acoustic phonon, point defect),
the scattering rate is proportional to the density of final states:

«D(E)xE r(E)c E™

7(E)

The energy-dependent mean-free-path is:
A ( E) oc I/E

What does this type of scattering do to the conductance?
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effect of short range / ADP scattering

Assume T, = 0 K and diffusive transport (just to keep the math simple)

2E.
Thog

j A(Er) < 1/E; o = constant!

For short range or ADP scattering, og is constant.

1
Oy =N qQu, = K, € —
S

N.H. Shon and T. Ando, J. Phys. Soc. Japan, 67, 2421, 1998.
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maximum conductivity of graphene
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long range (charged impurity) scattering

E AT as ET

arged @mpurity)-seatterirg>

W, L ~ microns

Ew (X)=Usg (x)
N

§ ™~ r
AP

S0,
Top view Random charges introduce random
fluctuations in E(k), which act a
For screened or unscreened scattering centers.

charged impurity scattering, the
mfp is proportional to energy.

High energy electrons don’t “see
these fluctuations and are not
scattered as strongly. 32



effect of charged impurity scattering

Assume T, = 0 K and diffusive transport (just to keep the math simple)

2q° 2E
o, :%Z(EF)(ﬂ'hUFF] A(E.) < E,
O, o Ny (w4, constant)

For charged impurity scattering, og Vs. ng IS linear.

T. Ando, J. Phys. Soc. Japan, 75, 074716, 2006

N.M.R. Peres, J.M.B. Lopes dos Santos, and T. Stauber, Phys.

Rev. B, 76, 073412, 2007.
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gate-modulated conductance in graphene

1) The location of the Fermi level (or equivalently the
carrier density) is experimentally controlled by a “gate.”

2) In atypical experiments, a layer of graphene is placed
on a layer of SIO,, which is on a doped silicon
substrate. By changing the potential of the Si substrate
(the “back gate”), the potential in the graphene can be
modulated to vary Er and, therefore, ns.

Lundstrom 2011 35



experimental structure (2-probe)

(4-probe techniques are used to eliminate series resistance and for Hall
effect measurements.)

: S W, L ~ microns
SiO,
. SiO,
Side Top view

Typically, Cr/Au or Ti/Au are used for the metal contacts.

The thickness of SiO, is typically 300nm or 90nm, which makes it

possible to see a single layer of graphene. %



using a gate voltage to change the Dirac point (or Ef)

AV E (k)]

B oJraphene

(doped Si)
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gate voltage - carrier density relation

If the oxide is not too thin (so that
the quantum capacitance of the
G graphene is not important), then

qn, =C. V.
(: __é%ns
INS t

Lundstrom 2011 38



sheet conductance vs. Vg

L ~ 5000 nm
t,, =300 nm

Fig. 30 in A. H. Castro, et al.,“The electronic
properties of graphene,” Rev. of Mod. Phys.,
81, 109, 20009.

Lundstrom 2011
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mean-free-path (V= 100V)

o, =3.0mS

n, ~7.1x10% cm?

% L ~ 5000 nm /
\\ /

t, =300 nm E. ~0.3eV

app

A(0.3eV)<<L

Fig. 30 in A. H. Castro, et al.,“The \_

Ao (0.3 €V) =130 nm

electronic properties of graphene,”
Rev. of Mod. Phys., 81, 109, 20009.
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mean-free-path (Vg = 50V)

o, ~1.5mS

ns = 3.6 x10"% cm™

L ~ 5000 nm EF ~0.2¢eV

t,, =300 nm ;
A (0.2 €V) = 90 NM

app

A1(0.2eV) AGE
2(0.3eV)

0.2eV

Fig. 30 in A. H. Castro, et al.,“The
electronic properties of graphene,” 0.3eV
Rev. of Mod. Phys., 81, 109, 20009.
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mobility

Since, 05 ~ ng, We can write:
GS = nSq/un
and deduce a mobility:

1. ~12,500 cm?/V-sec

Mobility is constant, but mean-
free-path depends on the
Fermi energy (or ng).

Fig. 30 in A. H. Castro, et al.,“The
electronic properties of graphene,”
Rev. of Mod. Phys., 81, 109, 20009.
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electron-hole puddles

Fig. 30 in A. H. Castro, et al.,“The electronic
properties of graphene,” Rev. of Mod.
Phys., 81, 109, 20009.

J. Martin, et al, “Observation of
electron—hole puddles in graphene
using a scanning single-electron
transistor,” Nature Phys., 4, 144, 2008
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effect of potassium doping

60

|.'I
* [z %II' 'II?

" fg

For nominally undoped
samples, og vS. ng IS non-
linear.

As doping increases, O¢
VS. ng becomes more
linear, mobility decreases,
and the NP shifts to the
left.

J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams,and M. Ishigami,
“Charged-impurity scattering in graphene,” Nature Phys., 4, 377-381, 2008. 44




nominally undoped sample: is it ballistic?

1 1 1
- =4 —
Ao A
Gs/(zqz/h)
A= ~ 164
PN o
A<<L

J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams,and M. Ishigami,
“Charged-impurity scattering in graphene,” Nature Phys., 4, 377-381, 2008. 45



unannealed vs. annealed suspended graphene

O o€ 4[N
] —
£ X A ~1300 nm
FS / ST Tw”
\ 3 Y ™ £ 100
30§ Q\i — mm ] expected from
Os |= N 7 "“ = ballistic theory
2 N S 150 &
(q_j £ \"'{;.I __fl o
h [ ~150 nm I' I.r-:"l P
15 L T — 4OK _:/ I,
2 | 0 | 2
n (10" em?)

K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, “Temperature dependent
transport in suspended graphene,” 2008
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temperature dependence

I
Away from the conductance minimum, the conductance decreases as T
increases (or resistivity increases as temperature increases).
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J.-H. Chen, J. Chuan, X. Shudong, M. Ishigami, and M.S. Fuhrer, “Intrinsic and extrinsic
performance limits of graphene devices on SiO,,” Nature Nanotechnology, 3, pp. 206-209,
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phonons and temperature dependence

s = G, A 1 0 0 ehw(ﬂ)/kBTL 1
acoustic phonons: optical phonons:
h(()< kBTL ha)o ~ kBTL
N, ~ KT, N 1
ha) 0 eha’o/kBTL _1
R oc T, R o L

eha)o/kBTL _1

Lundstrom 2011

48



general picture of og vs. ng (diffusive)

Charged-impurity (long-
Short range or range) scattering.
acoustic phonon . L.
© P ballistic N

scattering. \ o .~ | Constant mobility.

00..‘ S “.‘0‘ /

\\ “\‘ oC _nS // .
\ / Result is a
\ % ,: /(x nS . .
N i combination of
N i charged impurity and
N\ i | S phonon scattering.
nS
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what about the contacts?

Back gate
(doped Si) /

Ng

(OF )

The contact resistance is voltage
dependent. Contact can distort the
characteristic and produce asymmetries

between n- and p-type conduction.
Use 4-probe measurements! 50
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mobility and effective mass

20° ¢ M(E)( afoj 20° M (E)
=— | A(E — dE~——A(E =
GShj()WkaE p B ) Ty A
M(EF)_ 2EF h
W rho,
qu(EF) qu(EF)
T = =
A(EF):EUFTm(EF) — (F/Uﬁ) a m
o _E m*:E—g
> Th*v} _ Ur
m*zﬁ
(Datta, Lessons from Nanoscience) v
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guestions

1) Work out the Hall effect for graphene and show that it is
the same as for parabolic bands, but with a different
effective mass.

2) Graphene is said to have high thermal conductivity. Use
the concepts from Lecture 9 to explain why.

(Datta, Lessons from Nanoscience) 53
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summary

1) The linear dispersion of graphene gives rise to several
Interesting features.

2) Near-equilibrium transport in this novel material is
readily understood with the concepts developed in
these lectures.

3) Several interesting apllications for graphene are
currently being explored (e.g. transparent, flexible
conductors, novel transistors, thermal management,
supercapacitor electrodes, etc.

Lundstrom 2011 55



for more information

“Colloguium on Graphene Physics and Devices”
2009 NCN Summer School

http://nanohub.org/resources/7180

Dionisis Berdebes, Tony Low, and Mark Lundstrom.

“Lecture Notes on Low Bias Transport in Graphene: An
Introduction”

http://nanohub.org/resources/7436/download/Notes_on_|
ow_field transport_in_graphene.pdf
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