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diffusive transport in 2D
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evaluating the transport parameters

Only two quantities are needed:             and  ( ) ( )orT E Eλ( )M E

( ) ( ) ( )*

2 2
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M E W M E W

π
−

= =
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For  a 2D conductor with parabolic energy bands:

For  a 1D or 2D conductor with parabolic energy bands M(E) 
is given by different expressions.  T(E) depends on 
dimensionality and the particular scattering mechanisms that 
dominate.
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nonparabolic energy bands in 1D, 2D, or 3D

What if the bandstructure is non-parabolic?

Graphene is a good example, because E(k) is simple, 
but distinctly non-parabolic.  It is also a material that is of 
great interest currently.
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2011 Nobel Prize in Physics

"The Nobel Prize in Physics 2010". Nobelprize.org. 9 Jun 2011 
http://nobelprize.org/nobel_prizes/physics/laureates/2010/
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graphene

Graphene is a one-atom-thick planar carbon sheet with a 
honeycomb lattice.

Graphene has an unusual bandstructure that leads to 
interesting effects and potentially to useful electronic devices.

source: CNTBands 2.0 on nanoHUB.org  
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graphene bandstructure

E(k)

yk

xk

Brillouin zone

Datta:  ECE 495N – fall 2008:
https://nanohub.org/resources/5710 (Lecture 21) 
https://nanohub.org/resources/5721 (Lecture 22)



simplified graphene bandstructure near E = 0

We will use a very simple description of the graphene bandstructure, 
which is a good approximation near the Fermi level.

We will refer to the EF > 0 case, as 
“n-type graphene” and to the EF < 0 
case as “p-type graphene.”
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electron wavefunction
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two-component wavefunction
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density-of-states
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density-of-states
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carrier density
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number of modes

Recall from Lecture 2:
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DOS vs. modes
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DOS vs. modes (parabolic)
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conductance
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expected results: G vs. EF at TL = 0K
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expected results: G vs. nS at TL = 0K

G

Sn

vs. FE

vs. Sn ( )
2

21 F
S F F

F

En E E
π υ
 

= ∝ 
 

( ) ( )
22

F F
qG T E M E
h

=

( )F F SM E E n∝ ∝

SG n∝

( )( )constantFT E ≈

24Lundstrom 2011



expected results:  TL > 0K
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some key equations (TL = 0K)
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conductance and scattering
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λ(E) is the mean-free-path for backscattering, which is determined 
by the dominant scattering processes.
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scattering

The energy-dependent mean-free-path is:

( ) 1E Eλ ∝

What does this type of scattering do to the conductance?

For many scattering mechanisms (e.g. acoustic phonon, point defect), 
the scattering rate is proportional to the density of final states:

( ) ( )1 D E E
Eτ

∝ ∝ ( ) 1E Eτ −∝
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effect of short range / ADP scattering
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constant!Sσ =( ) 1F FE Eλ ∝

N.H. Shon and T. Ando, J. Phys. Soc. Japan, 67, 2421, 1998. 

For short range or ADP scattering, σS is constant.
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maximum conductivity of graphene
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long range (charged impurity) scattering

SiO2

Top view

W, L ~ microns

graphene

 as  Eλ ↑ ↑E

x

( ) ( )NP SE x U x=

High energy electrons don’t “see” 
these fluctuations and are not 
scattered as strongly.

Random charges introduce random 
fluctuations in E(k), which act a 
scattering centers.For screened or unscreened 

charged impurity scattering, the 
mfp is proportional to energy.

32
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effect of charged impurity scattering
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Assume TL = 0 K and diffusive transport (just to keep the math simple)

S Snσ ∝

( )F FE Eλ ∝

( )   constantnµ

T. Ando, J. Phys. Soc. Japan, 75, 074716, 2006

N.M.R. Peres, J.M.B. Lopes dos Santos, and T. Stauber, Phys. 
Rev. B, 76, 073412, 2007. 

For charged impurity scattering, σS vs. nS is linear.
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gate-modulated conductance in graphene

1) The location of the Fermi level (or equivalently the 
carrier density) is experimentally controlled by a “gate.”

2) In a typical experiments, a layer of graphene is placed 
on a layer of SiO2, which is on a doped silicon 
substrate.  By changing the potential of the Si substrate 
(the “back gate”), the potential in the graphene can be 
modulated to vary EF and, therefore, nS.

35Lundstrom 2011



experimental structure (2-probe)

Back gate

(doped Si)

graphene

SiO2

SiO2

graphene

Side 
view

Top view
Typically, Cr/Au or Ti/Au are used for the metal contacts.

The thickness of SiO2 is typically 300nm or 90nm, which makes it 
possible to see a single layer of graphene.

(4-probe techniques are used to eliminate series resistance and for Hall 
effect measurements.)

W, L ~ microns

W

L
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using a gate voltage to change the Dirac point (or EF)
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gate voltage - carrier density relation

( )S Sn p

( )G GV V ′DV

G G DV V V′ = − GV

If the oxide is not too thin (so that 
the quantum capacitance of the 
graphene is not important), then

S ins Gqn C V ′=

ins
ins

ins

C
t
ε

=

38Lundstrom 2011



( ) ( )22

2
S

app F
S

q h
E

n

σ
λ

π
=( )GV V →

mS
Sσ
↑

Fig. 30 in A. H. Castro, et al.,“The electronic 
properties of graphene,” Rev. of Mod. Phys., 
81, 109, 2009.

10T K=0B =

1 mµ SG W Lσ=

sheet conductance vs. VG

2
1 F

S ox G
F

En C V
π υ
 

= ≈  
 

5000 nmL ≈

300 nmoxt =

( )0 KLT =

( )
2 22( ) F

S F app F
F

EqE E
h

σ λ
π υ
 

≈  
 

39Lundstrom 2011



( )GV V →

mS
Sσ
↑

Fig. 30 in A. H. Castro, et al.,“The 
electronic properties of graphene,” 
Rev. of Mod. Phys., 81, 109, 2009.
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( )GV V →

mS
Sσ
↑

Fig. 30 in A. H. Castro, et al.,“The 
electronic properties of graphene,” 
Rev. of Mod. Phys., 81, 109, 2009.
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( )GV V →

mS
Sσ
↑

Fig. 30 in A. H. Castro, et al.,“The 
electronic properties of graphene,” 
Rev. of Mod. Phys., 81, 109, 2009.
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Since, σS ~ nS, we can write:

and deduce a mobility:

Mobility is constant, but mean-
free-path depends on the 
Fermi energy (or nS). 

212,500 cm /V-secnµ ≈
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electron-hole puddles

( )GV V →

SG

Fig. 30 in A. H. Castro, et al.,“The electronic 
properties of graphene,” Rev. of Mod. 
Phys., 81, 109, 2009.
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1 mµ

J. Martin, et al, “Observation of 
electron–hole puddles in graphene 
using a scanning single-electron 
transistor,” Nature Phys., 4, 144, 2008

mS
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↑
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effect of potassium doping

J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams,and M. Ishigami, 
“Charged-impurity scattering in graphene,” Nature Phys., 4, 377-381, 2008.

( )GV V →

For  nominally undoped 
samples, σS vs. nS is non-
linear. 

As doping increases, σS
vs. nS becomes more 
linear, mobility decreases, 
and the NP shifts to the 
left. 
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nominally undoped sample: is it ballistic?

J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams,and M. Ishigami, 
“Charged-impurity scattering in graphene,” Nature Phys., 4, 377-381, 2008.
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unannealed vs. annealed suspended graphene

40T K=

K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, “Temperature dependent 
transport in suspended graphene,” 2008
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temperature dependence
Away from the conductance minimum, the conductance decreases as TL

increases (or resistivity increases as temperature increases).

J.-H. Chen, J. Chuan, X. Shudong, M. Ishigami, and M.S. Fuhrer, “Intrinsic and extrinsic 
performance limits of graphene devices on SiO2,” Nature Nanotechnology, 3, pp. 206-209, 
2008.

(acoustic phonon scattering - intrinsic)

(optical phonons in graphene or 
surface phonons at SiO2 substrate)

100 :L S LT K R T< ∝

0100 : B Lk T
L ST K R e ω> ∝ 
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phonons and temperature dependence
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general picture of σS vs. nS (diffusive)

Sσ

Sn

ballistic
Short range or 
acoustic phonon 
scattering.

Result is a 
combination of 
charged impurity and 
phonon scattering.
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Charged-impurity (long-
range) scattering.

Constant mobility.

Sn∝



Use 4-probe measurements!

what about the contacts?

Back gate

(doped Si)

graphene
SiO2

GV

IV− + Sσ

Sn

The contact resistance is voltage 
dependent. Contact can distort the 
characteristic and produce asymmetries 
between n- and p-type conduction.
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mobility and effective mass
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questions

(Datta, Lessons from Nanoscience) 53

1) Work out the Hall effect for graphene and show that it is 
the same as for parabolic bands, but with a different 
effective mass.

2) Graphene is said to have high thermal conductivity.  Use 
the concepts from Lecture 9 to explain why.
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summary

1) The linear dispersion of graphene gives rise to several 
interesting features.

2) Near-equilibrium transport in this novel material is 
readily understood with the concepts developed in 
these lectures.

3) Several interesting apllications for graphene are 
currently being explored (e.g. transparent, flexible 
conductors, novel transistors, thermal management, 
supercapacitor electrodes, etc.

55Lundstrom 2011



for more information

“Colloquium on Graphene Physics and Devices”
2009 NCN Summer School
http://nanohub.org/resources/7180

Dionisis Berdebes, Tony Low, and Mark Lundstrom. 
“Lecture Notes on Low Bias Transport in Graphene: An 
Introduction”

http://nanohub.org/resources/7436/download/Notes_on_l
ow_field_transport_in_graphene.pdf
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