NCN Summer School: July 2011

Near-equilibrium Transport:
Fundamentals and Applications

Lecture 7: Boltzmann Transport Equation

Mark Lundstrom

Electrical and Computer Engineering
and
Network for Computational Nanotechnology
Birck Nanotechnology Center
Purdue University, West Lafayette, Indiana USA

cgo NG PURDUE

nanoHUB.org



copyright 2011

This material is copyrighted by Mark Lundstrom under
the following Creative Commons license:

Conditions for using these materials is described at

http://creativecommons.org/licenses/by-nc-sa/2.5/

Lundstrom 2011



outline

1) Introduction

2) The BTE

3) Solving the s.s. BTE
4) Transport coefficients
5) Magnetic fields

6) Discussion

/) Summary

Lundstrom 2011



Lundstrom 2011



goals

1) Find an equation for f(r, p, t) out of equilibrium
2) Learn how to solve it near equilibrium

3) Relate the results to our Landauer approach
results — in the diffusive limit

4) Add a B-field and show how transport changes

For much more about the BTE, see
Lundstrom, Fundamentals of Carrier Transport, Cambridge, 2000.
ECE 656: L12-17 http://nanohub.org/resources/7281
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semi-classical transport

d (hIZ) . dp -
-V .E.(F)=—qZ (F) {—=F
dt Ec(F) qz () ) dt e (
t
7k (t) =7k (O)+j—q£'(t’)dt’ ) equations of motion for
0 “semi-classical transport”
O, (t) = lVkE [E(t)] > E varies slowly on the
L t scale of the electron’s
LN U der wavelength.
r(t)—r(0)+£ug(t)dt )

no effective mass!
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p, =7k

trajectories in phase space

7k, (t) =1k, (0) +j—q£x (t")dt’

X(t)=x(0)+ | o (t)dt" o (t) =

O ey —+

dE
a7k,

k(t)

T(t) =[x(t), p, ()]
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Boltzmann Transport Equation (BTE)

A

p, =7k, T(t) = [x(t), p, (t)]

f(x, p,.t)

/\ f (x—o,dt, p, — F.dt,t—dt)

~_/ X

f(x p,t)=f(x—v,dt, p,—Fdtt-dt)

dt Lundstrom 2011



Boltzmann Transport Equation (BTE)

f (X p,t) g .y

dt F=—qf —quxB
df _of ofdx of dp, o o o, ot
dt ot oxdt op, dt ox oy
Vf:ac ﬁ+iﬁ+afﬁ
ar _of of =~ ot o _ " op " op, ) op,
dd o ox ° op, )
b = hk

%+5-Vrf+lfeovpf =0

Lundstrom 2011
10



result

o

optical absorption, impact ionization, etc.
and carrier scattering
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Boltzmann Transport Equation (BTE)

f(F,p,t): Z—Z+Dovrf+lfeovpf:0
assumptions: neglected scattering!

1) semi-classical treatment of electrons in a crystal with E(k)

d(7k B} , -
(dii ) Ve -af @) E-E+E(K)
v, (t):%VkE[k(t)] AP AX = T

2) neglected generation-recombination

3) neglected e-e correlations (mean-field-approximation)
Lundstrom 2011 12



In and out-scattering

p, =k, '”'S"at;?“”g T(t) =[x(), p,®)]

> X
df 2
—| =Cf =In-scattering - out-scattering position, x, does
dt coll not change

Lundstrom 2011
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Relaxation Time Approximation (RTA)

& _[f(ﬁ)—fo(ﬁ)j & _fo(P)_1(P)

m

st=1(p)-1,(p) In-scattering — out-scattering
¢~ 9f(P)
.

See Lundstrom: pp. 139-141. The RTA can be justified when the
scattering is isotropic and/or elastic in which case the proper time to
use is the “momentum relaxation time.”

Lundstrom 2011
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meaning of the RTA

%4- 5.Vr f + Ife on f=0 Assume spatial uniformity, no E-field.
ot T,
o(sf)__of St (t)=5f (0)e ™

ot T

m

Perturbations decay away exponentially with a characteristic time, 7,

Lundstrom 2011
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steady-state BTE in 1D

Lundstrom 2011

near-equilibrium
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near eq., S.s BTE

- = of (P
veV f—qf oV f=- T(p) v.f=V.f, V =V {
- of (P
veV f,—qf oV f =- (P)
.

of (f))z—fmﬁovrfo+qrmi':ovpfo

Lundstrom 2011
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BTE solution

—

of =—r, 08V f +qr, £ oV f
. 1 Lo Lo .
fo(p):1+e® @(r,p)=[E(r,p)—Fn(r)]/kBTL
:[EC(F)+E(ﬁ)_Fn(F)]/kBTL
vi-Shye
00
5t=r kT [-To|[5ev @—gF oV 0
of, _TmBL__E|:U.r_q.p:|
foO:%Vp®
% g %
00 OE

Lundstrom 2011
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BTE solution

5f=rkaTL( Z‘;Ej[u-ve) GF oV 0 |

O(F,p)=[Ec (F)+E(P)-F,(F)]/ksT,

_ 1 O (
r :kBTL[VrEC_VrF“]+[EC+E(p)_F”]Vr£ j V =

S f zrm(—giEjuo{—V F+T [EC+E(|6)—Fn]Vr£%j}

Lundstrom 2011
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generalized force

S :fm(—g—féja-f

. 1
F =-V.F+T |[E.+ E(k)—Fn]Vr(T—)

L

“generalized force”

The two forces driving current flow are gradients in QFL and gradients
In (inverse) temperature. In Lecture 4, we saw that (f, — f,) produces
current flow and that differences in Fermi level and temperature cause
differences in f.

Lundstrom 2011
21



now what?

S5t =rm(—g—g5-i

We have solved the BTE,
now what do we do with the solution?

Lundstrom 2011
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moments

n(F):éZk:fo(F |Z)+5f(r,12)zizk:fo(r k)

. § § luate th

J,(F)= 23 (-a)5 (k)51 (7 K) quantiies, we noed (0
‘ work out sums in k-

space.

recall lecture 4

Lundstrom 2011 24



sums and integrals in k-space

ZE:(.) —> j(o) deIZ

N, is the density of states in k-
space. Note thatitis
Independent of bandstructure.

See:

1D Nk=2><(LJ:L
T

> dk = dk
A A R
2D Nk:2><(4ﬁ2}= > dk = dk,dk,

dk = dk,dk, dk,

Lundstrom, Ch. 1, Fundamentals of Carrier Transport, Cambridge, 2000.
ECE 656: L2 http://nanohub.org/resources/7281 o5




electric current in 2D

—

5(1)=3 (5ot (K)ot =g T |oe 7

- 1
F=-V.F+T |E.+ E(k)—Fn]Vr[T—J

L

J,(F) =(_—q);7m (—6—%)(55%? tensor

Lundstrom 2011
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an isotropic, isothermal, 2D conductor

o dF, isothermal, spatial variations only in
" dx x-direction
of,
of =1, _8_E Uy S« generalized force in x-direction
Jo(F)= %Z(_Q)UXME (r, R’) current density in x-direction
k

_(=9) (_a_foj NER T [_a_fo) dF,
‘]nx_ A ;Ux T 6E Uxﬁ - A;qUme 8E X dX
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conductivity

) d(F,/q)
dx

To work out this expression, we need to evaluate the sum.

Lundstrom 2011
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conductivity

2 2w

J' cos’ Qdé’juz T (k)(—a—foj kdk
; : ok

Oq = >

9.9
27
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conductivity

gv q*°f of, h2k?
o = jcos Qdé’ju T (—a—E kdk E = -
g . kdk =—_dE
oy = j (——j kdk 7h
0
2(E-E
- 2EE)
2 ©
qz j(E_ (_a_fojdE :
. ok parabolic bands
7,(E) =1, constant scattering time
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conductivity

27, % of
o =MJ(E—EC)(—6—E"jdE

2
7th ;

:quZTO (+ 0 jT (E_Ec)dE
0

_E-E,
77 kB-I-L
E. —E
77 =
" I(B-I-L

change variables
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conductivity

‘T K, T
O_S:qufo B L}E(UF) J

7th?

We have our answer. Why does it look so unfamiliar?

Recall....

ns = N,p ﬁ(nF):LﬂkBTLjﬁ(nF)

7Th?

For energy-dependent scattering:

T, —> <<Tm (E)>>

g7,
m*

Gs:nsq[ j:nq,un

32



conductivity

‘T k. T
O-S:quﬂz;-;)ZB L ,‘LE(UF) J

We have our answer, but how does it relate to the
Landauer approach ?

Let’s go back....

2

_ 9.9
27

O juz T (——j kdk  change variables to energy
0

33



conductivity

q2 0 , afo *
=1 E) ——% m E
O 5 _([U z'm( )( j(gv Zjd

q° 7 8ij m’
= — D,.(E)| —— |dE D,.(E)=
7.5 0Dy (E) -2 o(E)=0,
q° T # 2 of <Ux>:%U
o=l [5om | 2o o (B -2 e h



finally

202 So the result from solving the BTE is
o = —<M2D (E)> <<A(E)>> equivalent to the result from the
Landauer approach in the diffusive limit.

Similarly, it is easy to show that the BTE gives the same answers for
the Seebeck coefficient and electronic heat conductivity.

Lundstrom 2011 35



for more about the BTE

For more on the BTE, see:

Lundstrom, Chapters 3, 4, Fundamentals of Carrier Transport,
Cambridge, 2000.

ECE 656: L12-15 http://nanohub.org/resources/7281

For more on the connection of the Landauer and BTE approaches,
see:

Changwook Jeong, et al. “On Landauer vs. Boltzmann and Full Band vs.
Effective Mass Evaluation of Thermoelectric Trans-port Coefficients,” J.
Appl. Phys., 107, 023707, 2010.

ECE-656 Lecture 17. http://nanohub.org/resources/7281. .



summary

Landauer approach:

o clear physical insight
« works in ballistic limit as well as quasi-ballistic and
diffusive regimes

BTE approach:

« “easy” to add magnetic field

e anisotropic materials (transport tensors) straight-forward
e can resolve transport spatially

o “off-equilibrium” easy to handle

* ballistic transport can be handled, but not easily

* not as physically transparent

Bottom line: should know both approaches.
Lundstrom 2011
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the BTE with a B-field...

ﬂ+50Vrf +F, oV f :ﬂ
ot dt |
steady-state with RTA:
of

ooV, f+F eV f=——

Tm

F =—qf —quxB

spatially uniform:
—qZ oV, f-q(0xB)eV,f==5f/z,

V>V ?

Lundstrom 2011
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the BTE with a B-field...

—qZ oV, f,—q(6xB)eV f=-51/z,

OK here: / \ But not here:

v, f= afva_afO* (
OF OE

~qF oV, f,—q(0xB)eV,(5f)=-5f/z,
a much more difficult equation to solve

Lundstrom 2011
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solving the BTE with a B-field...

Recall that without the B-field: —qZ oV, f, = -5 /z,

The solutionwas: of =17, (—Z—E’jﬁ a

So with a B-field:  —AZ ¢V, f,—q(0xB)eV (5f)=-5f/z,

of, ) -
Assume a solution of the form: of =1, (——OJU oG

—

oE

—

And find the unknown vector, G

Lundstrom 2011
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the solution with a B-field...

_qi::~(q27m/m*)(l§xf)—q(qu/m*)z( " §)|§

G = 2
1+ (w,7,,)

gB

*

cyclotron frequency: @, = low B-field: o7, <<1

(An electron gets only a little way along its orbit, and then it scatters.)

Assume a planar geometry with the electric field in the x-y plane and a z-
directed, small B-field normal to the plane.

G =—q£:~(q2rm/m*)(l§x£:)
G lies in the x-y plane.

Lundstrom 2011 42



the current equation...

o5 =N qu, My = 1,
Caltm)) =)
ST )

Lundstrom 2011

of,

s1r(- 2
oE

Hall mobility

Hall factor

J

—

LeG
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the magnetoconductivity tensor...

J =GZ: SuH(z’:: I§)

[‘]nx}_ Os —o 1y B [ie—xJ
‘Jny _—|_O-SIUHB O-S _l Z'y

Lundstrom 2011
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the coupled current equations (B = 0)

From Lecture 5:

jzaf—STVTL Z:Zlojn"'SVTL

dT
. — q _ _ -
JQ ZTLSTZ-—KVTL ‘Jx _ﬂJX Ke dx

(diffusive transport)

Transport tensors were diagonal for parabolic energy bands.

Lundstrom 2011 45



the coupled current equations (B # 0)

-[o(@))E (s @]V £ =[o(e)]5+[s(e)]vn
3o =T[5 (8)]E [ (B0 o =[#(8)]3,-[x (8]

(diffusive transport)

Transport tensors now depend on the B-field and have off-
diagonal terms.

Lundstrom 2011 46
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matrix and vector notation

‘]nx = Jsf;( — Oy Bzf;/

Jny — O-Sfdy +GS/UH Bzz-x

[‘Jnx]_{ Oy —Og iy Bz][ﬁ]
Joy +os 1y B, Os Z’Fy

J :GSZ':—GS,qu%:xé

Lundstrom 2011
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physical picture

<>

Hall
voltage

+
T
VH

x>

J =c707::—00yH £ xB

+++++++++++

Lundstrom 2011
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the BTE

2—:+5-vrf+ﬁe-vpf = Cf

Six-dimensional integro-differential equation for f(r, p, t).

For near-equilibrium conditions in bulk semiconductors,
analytical solutions are (sometimes) possible.

Lundstrom 2011 51



summary

1)

2)

3)

4)

Semi-classical transport assumes a bulk bandstructure with a
slowly varying applied potential, so that quantum reflections can be
ignored and position and momentum can both be precisely
specified.

Under near-equilibrium conditions with the RTA, the BTE can be
solved to find the probability that states in the device are occupied.

From the solution, we can determine the electric and heat currents.
For diffusive transport, the results are equivalent to the Landauer

approach.

The BTE is convenient for anisotropic transport, for including B-
fields, for resolving transport in space, and for off-equilibrium

transport, but ballistic transport is hard.

52
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