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introduction

We have argued that there is a simple connection 
between the mean-free-path and transmission:

Where does this expression come from? 

( ) ( )
( )

E
T E

E L
λ

λ
=

+

The mean-free-path is expected to be the “average 
distance” between scattering events:

Exactly what is the relation, and what determines the 
time between collisions, τ ?

( ) ( ) ( )E E Eλ υ τ∝
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characteristic times

( )0p t =

0t = t τ≈

( )pτ 

1) single particle lifetime, τ : 

Lundstrom 2011

mt τ τ≈ ≥

( )m pτ 

2) momentum relaxation time, τm : 

E mt τ τ τ≈ > ≥
( )E pτ 

3) energy relaxation time, τE : 
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transition rate

p z

Transition rate from p to p’ (probability per second)
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p′

α

( ),S p p′ 
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characteristic times

( )0p t =

0t =

E mt τ τ τ≈ > ≥mt τ τ≈ ≥

( ) ( )
,

1 , z

pm z

pS p p
p pτ ′ ↑

∆′=∑


 


( ) ( )
, 0

1 ,
pE

ES p p
p Eτ ′ ↑

∆′=∑


 


t τ≈

( ) ( )
,

1 ,
p

S p p
pτ ′ ↑

′= ∑


 

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Fermi’s Golden Rule

p
p′

( , )SU r t

E E E′ = + ∆ 0 for a static SE U∆ =

  for an oscillating SE Uω∆ = ± 

(See Sec.1.7 of Lundstrom  for a derivation of FGR)
Lundstrom 2011

( )f rψ 

( )i rψ 

( ) ( )22, p pS p p H E E Eπ δ′′ ′= − − ∆
 



*
, ( )p p f S iH U r drψ ψ

+∞

′
−∞

= ∫ 
 
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scattering

Lundstrom 2011

1) Identify the scattering potential (ionized impurity, 
lattice vibrations, surface roughness, etc.

2) Compute the transition rate from p to p’:  S(p p’)

3) Compute the scattering time, and momentum 
relaxation time

4) Compute the mean-free-path:

( ) ( )1 1 mp pτ τ=
 

for isotropic scattering

( ) ( )mmfp p pυ τ=
 

???
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scattering and DOS

Lundstrom 2011

p
p′

( , )SU r t

( )f rψ 

( )i rψ 

The number of ways that an incident 
electron at energy, E, can scatter is 
expected to be proportional to the density 
of final states that conserve energy and 
momentum. 

( ) ( )1
fD E

Eτ
∝

1) elastic scattering

2) phonon absorption

( ) ( )1
fD E

E
ω

τ
∝ + 

3) phonon emission

( ) ( )1
fD E

E
ω

τ
∝ − 
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II scattering

Lundstrom 2011

( )
1  as  E
Eτ

↓ ↑

High energy electrons don’t “see” 
these fluctuations and are not 
scattered as strongly.

E

x

( ) ( )c SE x U xδ =

Random charges introduce 
random fluctuations in EC, which 
act a scattering centers.

II scattering is anisotropic – it picks 
out final states with small angle 
deflections.



13

“power law scattering”

Lundstrom 2011

For some common scattering mechanisms, the scattering 
time can be written as  (or approximately as)

( ) 0

s

c

B L

E EE
k T

τ τ
 −

=  
 

Where “s” is a characteristic exponent that describes the 
particular scattering mechanism.  For example, in 3D, 

s = -1/2 for acoustic phonon scattering
s = +3/2 for ionized impurity scattering
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transmission and mean-free-path
•  Transmission is a key parameter in the Landauer approach. 

•  Transmission is related to the mean-free-path for back-
scattering.

• The mfp for backscattering is related to the microscopic 
scattering processes.

1) Why is T(E) =  λ(E)/(λ(E)+L)?
2) How is λ(E) related to S(p, p’)?

Questions: 

Lundstrom 2011
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transmission across a field-free slab

( )mfp Eλ=
0=E

( )1I E ( ) ( )1T E I E

( ) ( )1R E I E

Consider a flux of carriers injected from the left into a field-free slab of 
length, L.  The flux that emerges at x = L is T times the incident flux, 
where 0 < T < 1.  The flux that emerges from x = 0 is R times the 
incident flux, where T + R = 1, assuming no carrier recombination-
generation.

How is T related to the mean-free-path for backscattering within the 
slab?

x
0 L

(absorbing contact)

Lundstrom 2011
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injection from the right

( )mfp Eλ=
0=E

( )2I E( ) ( )2T E I E

( ) ( )2R E I E

x
0 L

(absorbing contact)

For elastic scattering:

Near equilibrium:

( ) ( ) ( )12 21T E T E T E= =

( ) ( ) ( )12 21T E T E T E≈ ≈

In general, there could be injection from both the left and the right 
contacts.

Lundstrom 2011

(no built-in fields)
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problem specification

( )mfp Eλ=
0=E

( )1I E ( ) ( )1T E I E

( ) ( )1R E I E

1) Inject from left only.

2) Ignore “vertical transport” (elastic scattering or near-equilibrium), so 
T12(E) = T21(E) = T(E).

Then relate T to the mean-free-path for backscattering within the slab. 
(No assumption about whether the slab length, L, is long or short 
compared to the mfp, but we do assume that the mean-free-path is 
not position-dependent.)

x
0 L

(absorbing contact)

Lundstrom 2011
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transmission

mfp λ= 0=E( 0)I x+ = ( ) ( 0)I x L T I x+ += = =

( 0)RI x+ =

x
0

( ) ( ) ( )d Ix I x I x
dx λ λ

+ + −

= − +

( )I x+

( )I x−

( ) ( ) (constant)I I x I x+ −= −

( ) ( )I x I x I− += −

( )dI x I
dx λ

+

= − =

L

absorbing boundary

Lundstrom 2011
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transmission (ii)

mfp λ= 0=E( 0)I x+ = ( )0TI +

( )0RI +

x
0

( )I x+

( )I x−

( )dI x I
dx λ

+

= −

( ) (0) xI x I I
λ

+ += −

absorbing boundary

L

( )

( )

00

I x x

I

IdI dx
λ

+

+

+ ′= −∫ ∫

Lundstrom 2011
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transmission (iii)

mfp λ= 0=E
1 ( 0)I I x+= = 1TI

1RI

x
0

( )I x+

( )I x−

( ) (0) xI x I I
λ

+ += −

( )( ) (0 ) ( ) ( ) xI x I I x I x
λ

+ + + −= − −

( )( ) (0 ) ( ) ( ) LI L I I L I L
λ

+ + + −= − −

( ) 0I L− =

absorbing boundary

L

( ) (0 ) ( ) LI L I I L
λ

+ + += −
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transmission (iv)

mfp λ= 0=E( 0)I x+ =
( ) ( )0I x L T I+ += =

1RI

x
0

( )I x+

( )I x−

( ) (0 ) ( ) LI L I I L
λ

+ + += −

absorbing boundary

(0)( )
1
II L

L λ

+
+ =

+

( )
(0)

I L T
I L

λ
λ

+

+ = =
+

0T L λ→ >>

1T L λ→ <<

( ) ( )
( )

E
T E

E L
λ

λ
=

+
( ) ( ) 1T E R E+ =

L

Lundstrom 2011
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backscattering in 1D

Lundstrom 2011

incident 
electron X

scattering  
potential

forward 
scattering

( ) ( ) ( )2 mE E Eλ υ τ=

x

back 
scattering

If we assume that the scattering is isotropic (equal 
probability of scattering forward or back) then average time 
between backscattering events is 2.
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backscattering in 2D

Lundstrom 2011

incident electron
scattering  
potential

x

( ) ( ) ( )
2 mE E Eπλ υ τ=

If we assume that the scattering is 
isotropic:

back scattering

forward scattering

θ

more severe back 
scattering

X
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mean-free-path for backscattering

( )
2

2 x m

x

E
υ τ

λ
υ

≡ This is an average over angle at a specific 
energy, E.

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 1D

2D
2
4 3D
3

m

m

m

E E E

E E E

E E E

λ υ τ
πλ υ τ

λ υ τ

=

=

=

Lundstrom 2011

Changwook Jeong, et al. “On Landauer vs. Boltzmann and Full Band vs. Effective Mass 
Evaluation of Thermoelectric Trans-port Coefficients,” J. Appl. Phys., 107, 023707, 2010.

ECE-656 Lecture 17.  http://nanohub.org/resources/7281.
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discussion

i) estimating the mfp from measurements

ii) relating the mfp to the diffusion coefficient

iii) relating the mfp to the mobility

iv) average mfp for power law scattering

v) exercise:  mfp for a Si MOSFET
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i) estimating the mfp from measurements

Lundstrom 2011

Consider a 2D diffusive conductor

2D s
WG
L

σ=

Recall that the sheet conductance is given by:

( ) ( )
2

0
2

2
S D

fq M E E dE
h E

σ λ ∂ = − ∂ ∫

Having measured σs , how can we estimate the average mfp?
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average mfp

expression for sheet conductance

Lundstrom 2011

( ) ( )

( )
( )

0
22

0
2

0
2

2 D

S D

D

fM E E dE
fq E M E dE

fh EM E dE
E

λ
σ

∂ −  ∂∂   = − ∂ ∂   − ∂ 

∫
∫

∫

( ) 0
2 2D D

fM M E dE
E
∂ ≡ − ∂ ∫

( ) ( )

( )

0
2

0
2

D

D

fM E E dE
E

fM E dE
E

λ
λ

∂ − ∂ ≡
∂ − ∂ 

∫

∫

( )
2

2
2

S D
q E M
h

σ λ=

( ) ( )
2

0
2

2
S D

fq M E E dE
h E

σ λ ∂ = − ∂ ∫
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for 2D parabolic bands….

( ) 0
2 2D D

fM M E dE
E
∂ = − ∂ ∫ ( ) ( )*

2

2 c
D V

m E E
M E g

π
−

=


Lundstrom 2011

( ) ( )2 2 1/22D D B L FM M k Tπ η−= F ( )F F c B LE E k Tη = −

( )2 0S Dn D f E dE= ∫
*

2 2D V
mD g
π

=


( )
*

02
B

S v F
m k Tn g η
π

=


F ( ) ( )0 ln 1 F
F eηη = +F

(single subband)
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the procedure….

Lundstrom 2011

1) Measure sheet conductance

( )
2

2
2

S D
q E M
h

σ λ=

2) Deduce average mfp

( ) ( ) ( ) ( ) ( ) ( )2 2
2 2 1 2

1
2 2 2

S S

D D B L F

E
q h M q h M k T

σ σλ
π η−

= =
F

3) Deduce ηF from the measured carrier density.

( )
*

02
B

S F
m k Tn η
π

=


F
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the procedure….for a non-degenerate semiconductor

( ) ( )2 B L S

T S

k T q
E

q n
σλ

υ
 

=  
 

Key point:  need to measure two quantities:

1) sheet conductance
2) sheet carrier density

*2T B Lk T mυ π=

( ) ( )2 B L S n

T S

k T q n qE
q n

µλ
υ

 
=  

 

( )
( )

2T
n

B L

E
k T q

υ λ
µ =

( )
2

T
n

E
D

υ λ
=
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ii) mfp and diffusion coefficient

( )mfp Eλ= 0=E( 0)I x+ =
( ) 1(0)I x L T I+ = =

( 0)RI x− =

x

( )I x+

( )I x−

L

absorbing boundary

Lundstrom 2011

0
( )0 (0) xn I υ+ + +=

( )0 (0) xn I υ− − +=

( ) ( )0 1 (0) xn R I υ+ += +

( ) ( )0 2 (0) xn T I υ+ += −

( ) ( ) xn L I L υ+ + +=

( )0 0n− =

( ) ( ) xn L I L υ+ +=

( ) (0) xn L TI υ+ +=
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carrier densities

( )mfp Eλ= 0=E( 0)I x+ =
( ) 1(0)I x L T I+ = =

( 0)RI x− =

x

( )I x+

( )I x−

L

absorbing boundary

Lundstrom 2011

0

( )n x ( ) (0)

x

TIn L
υ

+

+
=

( ) ( )2 (0)
0

x

T I
n

υ

+

+

−
=
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carrier densities

( )mfp Eλ= 0=E( 0)I x+ =
( ) (0)I x L T I+ += =

( 0)RI x+ =
( )I x+

( )I x− absorbing boundary

Lundstrom 2011

( ) (0)

x

TIn L
υ

+

+
=

( ) ( )2 (0)
0

x

T I
n

υ

+

+

−
=

( ) ( ) ( )2 (0) (0)0
x x

T I TIn n L
υ υ

+ +

+ +

−
− = −

( ) ( ) ( )(0)0 2 1
x

In n L T
υ

+

+
− = −

(0)I TI +=

( ) ( )0
2 1
x n n LTLI

T L
υ+ − 

= ×  −  
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Fick’s Law

( )mfp Eλ= 0=E( 0)I x+ =
( ) 1(0)I x L T I+ = =

( 0)RI x− =

x

( )I x+

( )I x−

L

absorbing boundary

Lundstrom 2011

0

( )n x( ) ( )0
2 1
x n n LTLI

T L
υ+ − 

= ×  −  
nI D dn dx= −

n
dnI D
dx

= −
2 1
x

n
TLD

T
υ+

=
−

T
L

λ
λ

=
+

2
x

nD
υ λ+

=
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diffusion coefficient

Lundstrom 2011

( )
( ) ( )

2
x

n

E E
D E

υ λ+

=
The average <•> is an average over 
angle at a given energy, E.

In 1D: ( ) ( )x E Eυ υ+ = ( ) ( ) ( ) ( ) ( ) ( )22
2n

E E E
D E E E

υ υ τ
υ τ

  = =

In 2D: ( ) ( )2
x E Eυ υ

π
+ = ( )

( ) ( ) ( ) ( ) ( )2
2

2
2 2n

E E E E E
D E

πυ υ τ υ τπ
 
  = =

In 3D: ( ) ( )1
2x E Eυ υ+ = ( )

( ) ( ) ( ) ( ) ( )2
1 4
2 3

2 3n

E E E E E
D E

υ υ τ υ τ
 
  = =
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iii) mobility

Frequently, we are given the measured mobility, not the measured 
sheet conductance.  To estimate the average mfp, we must relate the 
mobility to the average mfp.

Lundstrom 2011

To measure the mobility, write the conductance as

ch S n
WG n q
L

µ=

We obtain the mobility from the two measured quantities, nS and 
GCH

ch
n

S

GL
W qn

µ =

From the measured mobility, we can estimate the average mfp as 
follows.
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mobility

Lundstrom 2011

( ) ( )
2

0
2

2
ch D

fq WG M E E dE
h E L

λ
 ∂ = −  ∂  

∫

The 2D conductance (in the diffusive limit) is given by the Landauer 
expression:

We can also write the 2D conductance as:

ch S n
WG n q
L

µ=

Equating the two expressions gives a formula for the mobility…
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definition of mobility

( ) ( )
2

0
2

2
ch D S n

fq W WG M E E dE n q
h E L L

λ µ
 ∂ = − =  ∂  

∫

Lundstrom 2011

How do we now relate this to the average mfp?

So the mobility is given by:

( ) ( ) 0
2

2
D

n
S

fq M E E dE
h E

n

λ
µ

∂ − ∂ =
∫
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average mfp

expression for mobility

( ) 0
2 2D D

fM M E dE
E
∂ ≡ − ∂ ∫

( ) ( )

( )

0
2

0
2

D

D

fM E E dE
E

fM E dE
E

λ
λ

∂ − ∂ ≡
∂ − ∂ 

∫

∫

Lundstrom 2011

( ) ( ) 0
2

1 2
n D

S

fq M E E dE
n h E

µ λ ∂ = − ∂ ∫

( ) ( )

( )
( )

0
2

0
2

0
2

1 2 D

n D
S

D

fM E E dE
fq E M E dE

fn h EM E dE
E

λ
µ

∂ −  ∂∂   = − ∂ ∂   − ∂ 

∫
∫

∫

2
1 2

n D
S

q M
n h

µ λ=
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mfp from mobility

( )
*

2 1 22
V

D T F
g mM υ η−=


F

( )F F c B LE E k Tη = −

Lundstrom 2011

*2T B Lk T mυ π=

( )
*

02
B L

S F
m k Tn η
π

=


F
( ) ( )

( )
0

1/2

2 B L n F

T F

k T q µ η
λ

υ η−

=
F

F

( )2 B L n

T

k T q µ
λ

υ
= (non-degenerate)

2
T

nD
υ λ

=
n B

n

D k T
qµ

=

2
1 2

n D
S

q M
n h

µ λ=
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iv) average mfp for power law scattering

Lundstrom 2011

( ) 0

r

c

B L

E EE
k T

λ λ
 −

=  
 

( ) ( )

( )

0
2

0
2

D

D

fE M E dE
E

fM E dE
E

λ
λ

∂ − ∂ =
∂ − ∂ 

∫

∫

( )
( )

( )
( )

1/2
0

1/2

3 / 2
3 / 2

r F

F

r η
λ λ

η
−Γ +

=
Γ

F
F

( )
( )0

3 / 2
3 / 2

r
λ λ

Γ +
=

Γ
(non-degenerate)
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v) exercise: mfp in a Si N-MOSFET

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

2007 N-MOSFET
(unstrained Si technology) What is the mfp at high 

gate voltage?

( ) 21.2 260 cm /V-sn GV Vµ = =

(measured for long channels)

( ) 12 21.2 7.9 10  cmS Gn V V −= = ×

C. Jeong, et al., IEEE Trans. Electron Dev., 56, pp. 2762-2769, 2009.

Lundstrom 2011

L = 60 nm
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example

position, x

en
er

gy

1( )xε

low VDS

L

2260 cm /V-snµ ≈

1I
( ) ( )

( )
0

1/2

2 B L n F

T F

k T q µ η
λ

υ η−

=
F

F

7 nm 0.12Lλ ≈ ≈

Lundstrom 2011

12 27.9 10  cmSn −≈ ×

( )
*

2
2 ln 1  cmFB

S V
m k Tn g eη
π

−= +

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outline

1) Physics of scattering

2)  Transmission and mfp

3)  MFP and scattering

4) Diffusion coefficient and MFP

5) Estimating mfp experimentally

6) Summary



Lundstrom 2011 48

summary

1) Transmission is related to the mean-free path for 
backscattering.

2) The mean-free-path for backscattering is longer 
than the mfp.

3) The mfp for backscattering can be related to 
microscopic scattering processes.

4) The mfp for backscattering can be estimated from 
the mobility.
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questions

Lundstrom 2011

1) Physics of scattering

2)  Transmission and mfp

3)  MFP and scattering

4) Diffusion coefficient and MFP

5) Estimating mfp experimentally

6) Summary
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