
Challenges and Strategies for
High End Computing

Kathy Yelick
EECS Professor, U.C. Berkeley
NERSC Division Director, LBNL

Major Challenges in High End Computing

• Shift to multicore complicates
programming

• Driven by power density within a chip
• Power consumption of centers is

another major challenge

Moore’s Law is Alive and Well

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Slide source: Jack Dongarra

Clock Scaling Hits Power Density Wall

4004
8008
8080

8085

8086

286 386
486

Pentium®
P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
w

er
 D

en
si

ty
 (W

/c
m

2)

Hot Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
Surface

Source: Patrick
Gelsinger, Intel®

Scaling clock speed (business as usual) will not work

Concurrency for Low Power

• Highly concurrent systems are more power efficient
– Dynamic power is proportional to V2fC
– Increasing frequency (f) also increases supply

voltage (V): more than linear effect
– Increasing cores increases capacitance (C) but

has only a linear effect
• Hidden concurrency burns power

– Speculation, dynamic dependence checking, etc.
– Push parallelism discover to software (compilers

and application programmers) to save power
• Challenge: Can you double the concurrency in your

algorithms every 2 years?

Revolution is Happening Now
• Chip density is

continuing
increase ~2x
every 2 years
– Clock speed is

not
– Number of

processor
cores may
double instead

• There is little or
no hidden
parallelism
(ILP) to be
found

• Parallelism

Source: Intel, Microsoft (Sutter) and
Stanford (Olukotun, Hammond)

100

1000

10000

100000

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1993 1996 1999 2002 2005 2008 2011 2014

SUM
#1
#500

Petaflop with ~1M Cores By 2008

1Eflop/s

100 Pflop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflops/s

1 Tflop/s

100 Gflop/s

10 Gflop/s

1 Gflop/s

10 MFlop/s

1 PFlop system in 2008

Slide source Horst Simon, LBNL

Data from top500.org

6-8 years

Common
by 2015?

Need a Fundamentally New Approach

• Rethink hardware
– What limits performance
– How to build efficient hardware

• Rethink software
– Massive parallelism
– Eliminate scaling bottlenecks replication,

synchronization
• Rethink algorithms

– Massive parallelism and locality
– Counting Flops is the wrong measure

Rethink Hardware
Debunking some Hardware Myths

Power Demands Threaten to Limit the Future
Growth of Computational Science

• LBNL Study for Climate Modeling in 2008 (Shalf, Wehner, Oliker)
– Extrapolation of Blue Gene and AMD design trends
– Estimate: 20 MW for BG and 179 MW for AMD

• DOE E3 Report
– Extrapolation of existing design trends
– Estimate: 130 MW

• DARPA Exascale Study
– More detailed assessment of component technologies

• Power-constrained design for 2014 technology
• 3 TF/chip, new memory technology, optical interconnect

– Estimate: 20 MW for memory alone, 60 MW aggregate so far
• NRC Study

– Power and multicore challenges are not just an HPC problem

Processor Power and Performance
Embedded Application-Specific Cores

Performance on EEMBC benchmarks aggregate for Consumer, Telecom, Office, Network, based on ARM1136J-S (Freescale i.MX31),
ARM1026EJ-S, Tensilica Diamond 570T, T1050 and T1030, MIPS 20K, NECVR5000). MIPS M4K, MIPS 4Ke, MIPS 4Ks, MIPS 24K, ARM
968E-S, ARM 966E-S, ARM926EJ-S, ARM7TDMI-S scaled by ratio of Dhrystone MIPS within architecture family. All power figures from
vendor websites, 2/23/2006.

Graph courtesy of Chris Rowen, Tensilica Inc.

0

2

4

6

8

10

12

0 25 50 75 100 125 150 175 200

Power
(core mW)

50x performance/watt

Conventional Embedded Core

Application-Targeted Core

Desktop Core

Desktop processors
waste power optimizing
for serial code

How Small Is “Small”?

• Power5 (Server)
– 389 mm2

– 120 W @ 1900 MHz
• Intel Core2 sc (Laptop)

– 130 mm2

– 15 W @ 1000 MHz
• PowerPC450 (BlueGene/P)

– 8 mm2

– 3 W @ 850 MHz
• Tensilica DP (cell phones)

– 0.8 mm2

– 0.09 W @ 650 MHz

Intel Core2

Power 5

Each core operates at 1/3 to 1/10th efficiency of largest chip, but you
can pack 100x more cores onto a chip and consume 1/20 the power!

PPC450
TensilicaDP

Rethink Software

Program Synthesis

• Autotuning: self-tuning code
– Can select from

algorithms/data structures
changes not producible by
compiler transform

• Needs extensive tuning knobs for writing basic code
• Don’t do this by hand: tools for tuning

Optimized code
(tiled, prefetched,

time skewed)

Spec: simple
implementation

(3 loop 3D stencil)

Sketch: optimized
skeleton

(5 loops, missing
some index/bounds)

Tools for Efficiency: Autotuning

• Automatic performance tuning
– Use machine time in place of human time for tuning
– Search over possible implementations
– Use performance models to restrict search space
– Autotuned libraries for dwarfs (up to 10x speedup)

Block size (n0 x
m0) for dense
matrix-matrix
multiply

• Spectral (FFTW, Spiral)
• Dense (PHiPAC, Atlas)
• Sparse (Sparsity, OSKI)
• Stencils/structured grids

– Are these compilers?
• Don’t transform source
• There are compilers that

use this kind of search
• But not for the sparse

case (transform matrix)

Optimization:
1.5x more entries (zeros)

1.5x speedup

Compilers won’t do this!

Sparse Matrix * Vector on Multicore

Name Clovertown Opteron Cell
Chips*Cores 2*4 = 8 2*2 = 4 1*8 = 8
Architecture 4-/3-issue, 2-/1-SSE3, OOO,

caches, prefetch
2-VLIW, SIMD, local

RAM, DMA
Clock Rate 2.3 GHz 2.2 GHz 3.2 GHz
Peak MemBW 21.3 GB/s 21.3 25.6 GB/s

Naïve SpMV (median of
many matrices)

1.0 GF 0.6 GF --

Efficiency % 1% 3% --
Autotune SpMV 1.5 GF 1.9 GF 3.4 GF

Peak GFLOPS 74.6 GF 17.6 GF 14.6 (DP Fl. Pt.)

Auto Speedup 1.5X 3.2X ∞

Do New Machines Need New Languages?

• Global address space: any thread/process may
directly read/write data allocated by another

• Partitioned: programmer controls layout
• One model for shared and distributed memory

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0 p1 pn

By default:
• Object heaps

are shared
• Program

stacks are
private

• 3 Current languages: UPC, CAF, and Titanium

How to Waste Machine $

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
ou

nd
tr

ip
La

te
nc

y
(u

se
c)

MPI ping-pong
GASNet put+sync

• Global Address space allows for sharing (reduce footprint)
• And it gives lower latency and higher bandwidth than two-

sided MPI

Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

MPI
GASNet

Rethink Algorithms

Latency and Bandwidth-Avoiding

• New optimal ways to implement Krylov subspace
methods on parallel and sequential computers
– Replace x → Ax by x → [Ax,A2x,…Akx]
– Change GMRES, CG, Lanczos, … accordingly

• Theory
– Minimizes network latency costs on parallel machine
– Minimizes memory bandwidth and latency costs on

sequential machine
• Performance models for 2D problem

– Up to 7x (overlap) or 15x (no overlap) speedups on BG/P
• Measure speedup: 3.2x for out-of-core

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Local Dependencies for k=8

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for [x,Ax,…,A8x], A tridiagonal

Can be computed without communication
k=8 fold reuse of A

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (1) Remote Dependencies for k=8

Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

One message to get data needed to compute remotely dependent entries, not k=8
Price: redundant work

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (2) Remote Dependencies for k=8

Fewer Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Reduce redundant work by half

Latency Avoiding Parallel Kernel for
[x, Ax, A2x, … , Akx]

• Compute locally dependent entries
needed by neighbors

• Send data to neighbors, receive from
neighbors

• Compute remaining locally
dependent entries

• Wait for receive
• Compute remotely dependent entries

Work by Demmel and Hoemmen

Can use Matrix Power Kernel, but change Algorithms

Predictions and Conclusions

• Parallelism will explode
– Number of cores will double every 18-24 months
– Petaflop (million processor) machines will be common in

HPC by 2015 (all top 500 machines will have this)

• Performance will become a software problem
– Parallelism and locality are fundamental; can save power

by pushing these to software

• Locality will continue to be important
– On-chip to off-chip as well as node to node
– Need to design algorithms for what counts

(communication not computation)
• Massive parallelism required (including pipelining

and overlap)

Question 1

Question 2

Question 3

Question 4

Question 5

	Challenges and Strategies for�High End Computing
	Major Challenges in High End Computing
	Moore’s Law is Alive and Well
	Clock Scaling Hits Power Density Wall
	Concurrency for Low Power
	Revolution is Happening Now
	Petaflop with ~1M Cores By 2008
	Need a Fundamentally New Approach
	Rethink Hardware��Debunking some Hardware Myths
	Power Demands Threaten to Limit the Future Growth of Computational Science
	Processor Power and Performance�Embedded Application-Specific Cores
	How Small Is “Small”?
	Rethink Software��
	Program Synthesis
	Tools for Efficiency: Autotuning
	Sparse Matrix * Vector on Multicore
	Do New Machines Need New Languages?
	How to Waste Machine $
	Rethink Algorithms
	Latency and Bandwidth-Avoiding
	Locally Dependent Entries for [x,Ax,…,A8x], A tridiagonal
	Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal
	Fewer Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal
	Latency Avoiding Parallel Kernel for�[x, Ax, A2x, … , Akx]
	Can use Matrix Power Kernel, but change Algorithms
	Predictions and Conclusions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5

