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Major Challenges in High End Computing

• Shift to multicore complicates 
programming

• Driven by power density within a chip
• Power consumption of centers is 

another major challenge



Moore’s Law is Alive and Well

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have 
become smaller, denser, 
and more powerful.

Gordon Moore (co-founder of 
Intel) predicted in 1965 that the 
transistor density of 
semiconductor chips would 
double roughly every 18 
months. 

Slide source: Jack Dongarra



Clock Scaling Hits Power Density Wall
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Scaling clock speed (business as usual) will not work



Concurrency for Low Power

• Highly concurrent systems are more power efficient 
– Dynamic power is proportional to V2fC
– Increasing frequency (f) also increases supply 

voltage (V): more than linear effect
– Increasing cores increases capacitance (C) but 

has only a linear effect
• Hidden concurrency burns power

– Speculation, dynamic dependence checking, etc.
– Push parallelism discover to software (compilers 

and application programmers) to save power
• Challenge: Can you double the concurrency in your 

algorithms every 2 years? 



Revolution is Happening Now
• Chip density is 

continuing 
increase ~2x 
every 2 years
– Clock speed is 

not
– Number of 

processor 
cores may 
double instead

• There is little or 
no hidden 
parallelism 
(ILP) to be 
found

• Parallelism

Source: Intel, Microsoft (Sutter) and 
Stanford (Olukotun, Hammond)
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6-8 years

Common 
by 2015?



Need a Fundamentally New Approach

• Rethink hardware
– What limits performance
– How to build efficient hardware

• Rethink software
– Massive parallelism
– Eliminate scaling bottlenecks replication, 

synchronization
• Rethink algorithms

– Massive parallelism and locality
– Counting Flops is the wrong measure



Rethink Hardware
Debunking some Hardware Myths



Power Demands Threaten to Limit the Future 
Growth of Computational Science

• LBNL Study for Climate Modeling in 2008 (Shalf, Wehner, Oliker) 
– Extrapolation of Blue Gene and AMD design trends
– Estimate: 20 MW for BG and 179 MW for AMD

• DOE E3 Report
– Extrapolation of existing design trends
– Estimate: 130 MW

• DARPA Exascale Study
– More detailed assessment of component technologies

• Power-constrained design for 2014 technology
• 3 TF/chip, new memory technology, optical interconnect 

– Estimate: 20 MW for memory alone, 60 MW aggregate so far
• NRC Study

– Power and multicore challenges are not just an HPC problem



Processor Power and Performance
Embedded Application-Specific Cores

Performance on EEMBC benchmarks aggregate for Consumer, Telecom, Office, Network, based on ARM1136J-S (Freescale i.MX31), 
ARM1026EJ-S, Tensilica Diamond 570T,  T1050 and T1030, MIPS 20K, NECVR5000).  MIPS M4K, MIPS 4Ke, MIPS 4Ks, MIPS 24K, ARM 
968E-S, ARM 966E-S, ARM926EJ-S, ARM7TDMI-S scaled by ratio of Dhrystone MIPS within architecture family. All power figures from 
vendor websites, 2/23/2006.

Graph courtesy of Chris Rowen, Tensilica Inc.

0

2

4

6

8

10

12

0 25 50 75 100 125 150 175 200

Power 
(core mW)

50x performance/watt

Conventional Embedded Core

Application-Targeted Core

Desktop Core

Desktop processors 
waste power optimizing 
for serial code



How Small Is “Small”?

• Power5 (Server)
– 389 mm2

– 120 W @ 1900 MHz
• Intel Core2 sc (Laptop)

– 130 mm2

– 15 W @ 1000 MHz
• PowerPC450 (BlueGene/P)

– 8 mm2

– 3 W @ 850 MHz
• Tensilica DP (cell phones)

– 0.8 mm2

– 0.09 W @ 650 MHz

Intel Core2

Power 5

Each core operates at 1/3 to 1/10th efficiency of largest chip, but you 
can pack 100x more cores onto a chip and consume 1/20 the power!

PPC450
TensilicaDP



Rethink Software



Program Synthesis

• Autotuning: self-tuning code
– Can select from 

algorithms/data structures 
changes not producible by 
compiler transform

• Needs extensive tuning knobs for writing basic code
• Don’t do this by hand: tools for tuning

Optimized code
(tiled, prefetched, 

time skewed)

Spec: simple 
implementation

(3 loop 3D stencil)

Sketch: optimized
skeleton

(5 loops, missing 
some index/bounds)



Tools for Efficiency: Autotuning

• Automatic performance tuning
– Use machine time in place of human time for tuning
– Search over possible implementations
– Use performance models to restrict search space 
– Autotuned libraries for dwarfs (up to 10x speedup)

Block size (n0 x 
m0) for dense 
matrix-matrix 
multiply

• Spectral (FFTW, Spiral)
• Dense (PHiPAC, Atlas)
• Sparse (Sparsity, OSKI)
• Stencils/structured grids

– Are these compilers?
• Don’t transform source
• There are compilers that 

use this kind of search
• But not for the sparse 

case (transform matrix)

Optimization:
1.5x more entries (zeros)

1.5x speedup

Compilers won’t do this!



Sparse Matrix * Vector on Multicore

Name Clovertown Opteron Cell
Chips*Cores 2*4 = 8 2*2 = 4 1*8 = 8
Architecture 4-/3-issue, 2-/1-SSE3, OOO, 

caches, prefetch
2-VLIW, SIMD, local 

RAM, DMA
Clock Rate 2.3 GHz 2.2 GHz 3.2 GHz
Peak  MemBW 21.3 GB/s 21.3 25.6 GB/s

Naïve SpMV (median of 
many matrices)

1.0 GF 0.6 GF --

Efficiency % 1% 3% --
Autotune SpMV 1.5 GF 1.9 GF 3.4 GF

Peak  GFLOPS 74.6 GF 17.6 GF 14.6 (DP Fl. Pt.)

Auto Speedup 1.5X 3.2X ∞



Do New Machines Need New Languages?

• Global address space: any thread/process may 
directly read/write data allocated by another

• Partitioned: programmer controls layout 
• One model for shared and distributed memory

G
lo
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l a

dd
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ss
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pa
ce x: 1
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l: l: l: 

g: g: g: 

x: 5
y: 

x: 7
y: 0

p0 p1 pn

By default: 
• Object heaps 

are shared
• Program 

stacks are 
private

• 3 Current languages: UPC, CAF, and Titanium 



How to Waste Machine $
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• Global Address space allows for sharing (reduce footprint)
• And it gives lower latency and higher bandwidth than two-

sided MPI
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Rethink Algorithms



Latency and Bandwidth-Avoiding

• New optimal ways to implement Krylov subspace 
methods on parallel and sequential computers
– Replace x → Ax   by  x → [Ax,A2x,…Akx]
– Change GMRES, CG, Lanczos, … accordingly 

• Theory 
– Minimizes network latency costs on parallel machine
– Minimizes memory bandwidth and latency costs on 

sequential machine
• Performance models for 2D problem

– Up to 7x (overlap) or 15x (no overlap) speedups on BG/P
• Measure speedup: 3.2x for out-of-core
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k=8 fold reuse of A
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Price: redundant work
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Latency Avoiding Parallel Kernel for
[x, Ax, A2x, … , Akx]

• Compute locally dependent entries
needed by neighbors

• Send data to neighbors, receive from 
neighbors

• Compute remaining locally 
dependent entries

• Wait for receive
• Compute remotely dependent entries



Work by Demmel and Hoemmen

Can use Matrix Power Kernel, but change Algorithms



Predictions and Conclusions

• Parallelism will explode
– Number of cores will double every 18-24 months
– Petaflop (million processor) machines will be common in 

HPC by 2015 (all top 500 machines will have this)

• Performance will become a software problem
– Parallelism and locality are fundamental; can save power 

by pushing these to software

• Locality will continue to be important
– On-chip to off-chip as well as node to node
– Need to design algorithms for what counts 

(communication not computation)
• Massive parallelism required (including pipelining 

and overlap)



Question 1
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Question 5
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