Modeling and Analysis of VLSI Interconnects

Cheng-Kok Koh ECE Purdue University

chengkok@purdue.edu
http://www.ece.purdue.edu/~chengkok

Outline

- Introduction
- Capacitance extraction
- Inductance modeling
- Conclusion

Interconnects do not scale well

International Technology Roadmap for Semiconductor

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013
Technology (nm) Max \# wiring levels	80	70	65	57	50	45	40	36	32
M1 RC (ps)	440	612	767	1044	1388	1782	2392	2857	3451
M1 resistivity (u $\Omega-c m)$	3.15	3.29	3.47	3.67	3.90	4.08	4.30	4.63	4.83
M1 capacitance (pF/cm)	$2.0-$	$2.0-$	$1.8-$	$1.9-$	$1.8-$	$1.8-$	$1.8-$	$1.6-$	$1.6-$
Global wire RC (ps)	111	165	209	316	410	523	687	787	977
Global wire resistivity ($\mu \Omega-c m)$	2.53	2.62	2.73	2.87	3.00	3.10	3.22	3.39	3.52
Global wire capacitance (pF/cm)	$2.1-$	$2.1-$	$1.8-$	$1.8-$	$1.7-$	$1.7-$	$1.7-$	$1.5-$	$1.5-$

[ITRS'05 and '06, http://www.itrs.net)]

Interconnect Modeling

- Capacitance only model
- RC model now widely used
- How about inductance?
- Ignored at low frequency ($\omega \mathrm{L}<\mathrm{R}$)
- Inductance can no longer be ignored
- Increasing operation frequency
- Lower wire resistance

Partial Element Equivalent Circuit

- PEEC Model [A. Ruehli, IBM Journal of R\&D, 1972]

- Retardation

M

$$
\begin{array}{cc}
V_{2}(t)=L_{2} \frac{d i_{2}(t)}{d t}+M \frac{d i_{1}(t-d / v)}{d t} & V_{2}(t)=L_{2} \frac{d i_{2}(t)}{d t}+M \frac{d i_{1}(t)}{d t} \\
\text { Full-wave PEEC } & \text { Quasi-static assumption }
\end{array}
$$

Interconnect Modeling Challenge

- Extraction of RLC parameters and simulation of interconnects are large scale problems
- Long interconnects have to be divided into several segments

Outline

- Introduction
- Capacitance extraction
- Inductance modeling
- Conclusion

What is capacitance?

- Simplest model: parallel-plate capacitor
- Two parallel plates and homogeneous
 dielectric between them
- The capacitance is $C=\varepsilon \frac{A}{d}$
- ε : permittivity of dielectric
- A: area of plate
- d: distance between plates
- The capacitance is the capacity to store charge
- Total charge at each plate is $Q=C V$
- One is positive, the other is negative

On-chip interconnects as capacitors

- Conductors: metal wire, via, polysilicon, substrate
- Dielectrics: SiO_{2}, \ldots
victim

cross-section

Multiconductor systems

- The presence of charge on any one of the conductors affects the potential of all the others
- Linear proportionality between potential and charge

$$
\begin{aligned}
& V_{1}=p_{11} Q_{1}+p_{12} Q_{2}+\cdots+p_{1 N} Q_{N} \\
& V_{2}=p_{21} Q_{1}+p_{22} Q_{2}+\cdots+p_{2 N} Q_{N} \\
& \vdots \\
& V_{N}=p_{N 1} Q_{1}+p_{N 2} Q_{2}+\cdots+p_{N N} Q_{N}
\end{aligned}
$$

Electric potential

- Electric potential at \mathbf{R} due to n charged bodies $\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{n}}$, located at $\mathbf{R}_{1}^{\prime}, \ldots, \mathbf{R}_{\mathrm{n}}^{\prime}$

$$
V=\frac{1}{4 \pi \varepsilon} \sum_{k=1}^{n} \frac{q_{k}}{\left|\mathbf{R}-\mathbf{R}_{k}^{\prime}\right|}
$$

- Electric potential due to a continuous distribution of charge confined in a given region:

$$
\begin{array}{ccc}
V=\frac{1}{4 \pi \varepsilon} \int_{V^{\prime}} \frac{\rho}{R} d v^{\prime} & V=\frac{1}{4 \pi \varepsilon} \int_{S^{\prime}} \frac{\rho_{s}}{R} d s^{\prime} & V=\frac{1}{4 \pi \varepsilon} \int_{L^{\prime}} \frac{\rho_{l}}{R} d l^{\prime} \\
\text { volume } & \text { surface } & \text { line }
\end{array}
$$

(Partial) Capacitance matrix

- Inverting the system of linear equations

$$
\begin{array}{ll}
V_{1}=p_{11} Q_{1}+p_{12} Q_{2}+\cdots+p_{1 N} Q_{N} \\
V_{2}=p_{21} Q_{1}+p_{22} Q_{2}+\cdots+p_{2 N} Q_{N} \\
\vdots & \Rightarrow \\
V_{N}=p_{N 1} Q_{1}+p_{N 2} Q_{2}+\cdots+p_{N N} V_{N}+c_{11} V_{2}+\cdots+c_{1 N} V_{N} \\
Q_{2}=c_{21} V_{1}+c_{22} V_{2}+\cdots+c_{2 N} V_{N} \\
Q_{N}=c_{N 1} V_{1}+c_{N 2} V_{2}+\cdots+c_{N N} V_{N}
\end{array}
$$

- The $c_{i i}$'s are coefficients of capacitance (self capacitance)
- The $\mathrm{c}_{\mathrm{ij}}{ }^{\prime} \mathrm{s}(\mathrm{i} \neq \mathrm{j})$ are coefficients of induction (coupling capacitance)
$\mathrm{O}\left(\mathrm{n}^{3}\right)$ for Gaussian elimination, $\mathrm{O}\left(\mathrm{n}^{2.807}\right)$ [Strassen 1969], O($\left.\mathrm{n}^{2.376}\right)$ [Coppersmith and Winograd 1990]

Framework for numerical method

Assume voltage [0, $0, \ldots, 1, \ldots, 0]$, i.e., only conductor i has unit voltage
2. Compute charge q_{j} for every conductor j
3. Obtain mutual cap $c_{i j}=q_{j j}$ and total cap $c_{i j}$ $=q_{i}$
4. Iterate through steps 1-3 using different voltage assignments

Integral equation approach

- Discretize the surfaces of m conductors into a total of n panels
- Write down potential coefficient matrix and linear
 system $P q=v$

$$
\begin{aligned}
P_{i j}= & \frac{1}{\operatorname{area}\left(A_{i}\right)} \\
& \times \int_{x_{i} \in A_{i}} \frac{1}{\operatorname{area}\left(A_{j}\right)} \int_{x_{j} \in A_{j}} \frac{1}{4 \pi \epsilon_{0}\left\|x_{i}-x_{j}\right\|} d a_{j} d a_{i}
\end{aligned}
$$

- Set $v_{k}=1$ if panel k is on the j-th conductor, and v_{k} $=0$ otherwise
- Solve for panel charge q and sum all the panel charge on the i th conductor $C_{i j}=\Sigma_{k \in \text { conductor } i} q_{k}$

Numerical solution by method of conjugate gradient

- Initial guess $\mathbf{q}_{(0)}=\mathbf{0}$
- Residual $r_{(i)}=v-\mathrm{Pq}_{(\mathrm{i})}$
- Initialize search direction and residual $\mathbf{d}_{(0)}=\mathbf{r}_{(0)}=\mathrm{V}$
- Iterate

$$
\begin{aligned}
\alpha_{(i)} & =\frac{\mathbf{r}_{(i)}^{T} \mathbf{r}_{(i)}}{\mathbf{d}_{(i)}^{T} \mathbf{P} \mathbf{d}_{(i)}} \\
\mathbf{q}_{(i+1)} & =\mathbf{q}_{(i)}+\alpha_{(i)} \mathbf{d}_{(i)} \\
\mathbf{r}_{(i+1)} & =\mathbf{r}_{(i)}-\alpha_{(i)} \mathbf{P} \mathbf{d}_{(i)} \\
\beta_{(i+1)} & =\frac{\mathbf{r}_{(i+1)}^{T} \mathbf{r}_{(i+1)}}{\mathbf{r}_{(i)}^{T} \mathbf{r}_{(i)}} \\
\mathbf{d}_{(i+1)} & =\mathbf{r}_{(i+1)}+\beta_{(i+1)} \mathbf{d}_{(i)}
\end{aligned}
$$

Fast multi-pole method (FMM)

- Bottleneck is in the computation of the potential on all panels, i.e., matrix-vector multiply $\mathrm{Pd}_{(\mathrm{i})}$
- Known as the n-body problem, can be solved in $\mathrm{O}(\mathrm{n})$ without loss in accuracy (machine precision) using FMM [Greengard-Rohklin] and [Appel]
- Basic idea: Potential due to a cluster of particles at some distance can be approximated with a single term
- FastCap from MIT [Nabors-White] and hierarchical capacitance extraction from TexasA\&M [Shi et al] used different forms of FMM in the iterative solvers

Hierarchical partitioning

- $R_{i}=$ longest dimension of panel i
- If $P_{\varepsilon}<P_{i j} \times R_{i}\left(\approx R_{i} / r_{i j}\right)$, subdivide the panel
- Record potential coefficient between two panels otherwise

Binary trees with cross links

- Cross links record the potential coefficient between two panels

$\mathrm{O}(1)$ number of cross links per node

- Two panels interact directly only if $\mathrm{r}_{\mathrm{ij}}>\mathrm{R}_{\mathrm{i}} \times \mathrm{P}_{\varepsilon}$, i.e., there are k panels between them
- Otherwise, parent nodes would have interacted

Equivalent potential coefficient matrix

1	$\frac{2}{3}$	4		$\frac{1516}{1718}$	19

Matrix-vector multiply: $\mathrm{Pq}=\mathrm{v}$

C.potential
$=P_{C B}$ F.charge + P_{CB} G.charge + $\mathrm{P}_{\mathrm{CB}} \mathrm{E}$.charge + P_{CC} C.charge + $\mathrm{P}_{\mathrm{CI}} \mathrm{M}$.charge + $\mathrm{P}_{\mathrm{CI}} \mathrm{N}$. charge + P_{CI} L.charge + P_{CJ} J.charge
$=P_{C B} B$.charge + P_{cC} C.charge + P_{CI} I.charge + $\mathrm{P}_{\mathrm{CJ}} \mathrm{J}$.charge

O(n) matrix-vector multiply

- Collect charge
- Charge at node = total charge at descendant leaf nodes ($\mathrm{d}_{(\mathrm{i})}$)

- Bottom-up traversal of trees, propagate charge at leaf nodes upwards
- D.charge $=$ F.charge + G.charge $=\mathrm{d}_{(\mathrm{i}), \mathrm{F}}+\mathrm{d}_{(\mathrm{i}), \mathrm{G}}$
- B.charge $=$ D.charge + E.charge $=$ D.charge $+\mathrm{d}_{(\mathrm{i}), \mathrm{E}}$
- A.charge $=$ B.charge + C.charge $=$ B.charge $+d_{(i), C}$

Matrix-vector multiply

E.potential
$=\mathrm{P}_{\mathrm{ED}}$ D.charge + $\mathrm{P}_{\mathrm{EE}} \mathrm{E}$.charge + P_{BC} C.charge + $\mathrm{P}_{\mathrm{EK}} \mathrm{K}$.charge + $P_{\text {EL }}$ L.charge + $\mathrm{P}_{\mathrm{BJ}} \mathrm{J}$.charge
$=$ B. potential + $P_{E D}$ D.charge + $\mathrm{P}_{\mathrm{EE}} \mathrm{E}$. charge + $\mathrm{P}_{\mathrm{EK}} \mathrm{K}$.charge + $P_{\text {EL }}$ L.charge

O(n) matrix-vector multiply

- Potential at node $\mathrm{j}=$ potential due to cross links at node ($\left.P_{\mathrm{jk}} \mathrm{d}_{(\mathrm{i}, \mathrm{k}}\right)$ + potential of parent

- Top-down traversal of trees, propagate potential at root nodes downwards
- A.potential $=0$
- B.potential $=$ A.potential $+\mathrm{P}_{\mathrm{BC}}$ C.charge $+\mathrm{P}_{\mathrm{BJ}}$ J.charge
- D.potential $=$ B.potential $+\mathrm{P}_{\mathrm{DE}}$ E.charge $+\mathrm{P}_{\mathrm{DL}}$ L.charge
- F.potential = D.potential $+\mathrm{P}_{\mathrm{F}\{\mathrm{FGMN}\}}\{\mathrm{FGMN}\}$.charge

Summary

- For n panels, $O(n)$ fast matrix-vector multiply based on FMM
- Tree structures with cross links to facilitate $O(n)$ matrix-vector multiply by bottom-up and top-down tree traversals
- $O(\mathrm{kn})$ time complexity for each solve of conductor charge, k being the number of iterations
- Assume m conductors with n panels, overall complexity is $O(\mathrm{kmn})$

Outline

- Introduction
- Capacitance extraction
- Inductance modeling
- Conclusion

Capacitive Coupling Property

- Coupling capacitance
- Limited to adjacent neighbors
- Limited to adjacent layers

Inductive Coupling Property

- Mutual Inductance
- Not limited to adjacent wires
- Not limited to adjacent layers
- Exists among all parallel wires

RLC Matrices

R is diagonal

C is tridiagonal

L is FULL

Questions

- Is there sparsity pattern related with L?
- How can we exploit such sparsity pattern in the simulation of RLC on-chip interconnects?

Locality of Capacitive Coupling

Is Inductive Coupling Localized?

zero?

Sparsity Resident in L^{-1}

$$
\begin{aligned}
& L=10^{-11} \times \\
& {\left[\begin{array}{rrrrrrr}
10.80 & 8.51 & 7.22 & 6.45 & 5.90 & 5.47 & 5.13 \\
8.51 & 10.80 & 8.51 & 7.22 & 6.45 & 5.90 & 5.47 \\
7.22 & 8.51 & 10.80 & 8.51 & 7.22 & 6.45 & 5.90 \\
6.45 & 7.22 & 8.51 & 10.80 & 8.51 & 7.22 & 6.45 \\
5.90 & 6.45 & 7.22 & 8.51 & 10.80 & 8.51 & 7.22 \\
5.47 & 5.90 & 6.45 & 7.22 & 8.51 & 10.80 & 8.51 \\
5.13 & 5.47 & 5.90 & 6.45 & 7.22 & 8.51 & 10.80
\end{array}\right]} \\
& L^{-1}=10^{10} \times \\
& {\left[\begin{array}{rrrrrrr}
2.53 & -1.67 & -0.12 & -0.12 & -0.08 & -0.05 & -0.11 \\
-1.67 & 3.63 & -1.60 & -0.04 & -0.07 & -0.04 & -0.05 \\
-0.12 & -1.60 & 3.64 & -1.59 & -0.04 & -0.07 & -0.08 \\
-0.12 & -0.04 & -1.59 & 3.64 & -1.59 & -0.04 & -0.12 \\
-0.08 & -0.07 & -0.04 & -1.59 & 3.64 & -1.60 & -0.12 \\
-0.05 & -0.04 & -0.07 & -0.04 & -1.60 & 3.63 & -1.67 \\
-0.11 & -0.05 & -0.08 & -0.12 & -0.12 & -1.67 & 2.53
\end{array}\right]}
\end{aligned}
$$

Why sparsity in L^{-1} ?

$$
M=\frac{\mu}{4 \pi A_{i} A_{j}} \iint_{A_{i} A_{j} L_{i}} \iint_{L_{j}} \frac{d l_{i} \cdot d l_{j}}{R} d a_{j} d a_{i}
$$

Similar to scalar potential coefficients encountered in capacitance extraction

$$
\begin{aligned}
P_{i j}= & \frac{1}{\operatorname{area}\left(A_{i}\right)} \\
& \times \int_{x_{i} \in A_{i}} \frac{1}{\operatorname{area}\left(A_{j}\right)} \int_{x_{j} \in A_{j}} \frac{1}{4 \pi \epsilon_{0}\left\|x_{i}-x_{j}\right\|} d a_{j} d a_{i}
\end{aligned}
$$

L^{-1} matrix suggests locality

[A. Devgan et al. (ICCAD 2000)]

Direct Truncation

$$
\begin{aligned}
& L=10^{-11} \times \\
& {\left[\begin{array}{rrrrrrr}
10.80 & 8.51 & 7.22 & 6.45 & 5.90 & 5.47 & 5.13 \\
8.51 & 10.80 & 8.51 & 7.22 & 6.45 & 5.90 & 5.47 \\
7.22 & 8.51 & 10.80 & 8.51 & 7.22 & 6.45 & 5.90 \\
6.45 & 7.22 & 8.51 & 10.80 & 8.51 & 7.22 & 6.45 \\
5.90 & 6.45 & 7.22 & 8.51 & 10.80 & 8.51 & 7.22 \\
5.47 & 5.90 & 6.45 & 7.22 & 8.51 & 10.80 & 8.51 \\
5.13 & 5.47 & 5.90 & 6.45 & 7.22 & 8.51 & 10.80
\end{array}\right]} \\
& Ł^{-1}=10^{10} \times \\
& {\left[\begin{array}{rrrrrrr}
2.53 & -1.67 & 0 & 0 & 0 & 0 & 0 \\
-1.67 & 3.63 & -1.60 & 0 & 0 & 0 & 0 \\
0 & -1.60 & 3.64 & -1.59 & 0 & 0 & 0 \\
0 & 0 & -1.59 & 3.64 & -1.59 & 0 & 0 \\
0 & 0 & 0 & -1.59 & 3.64 & -1.60 & 0 \\
0 & 0 & 0 & 0 & -1.60 & 3.63 & -1.67 \\
0 & 0 & 0 & 0 & 0 & -1.67 & 2.53
\end{array}\right]}
\end{aligned}
$$

Ł Matrix Contains Redundancy

$七^{-1}$

$Ł$

Ł Matrix Contains Redundancy

Numerical Example

Numerical Example

Windowing Technique

$$
\begin{gathered}
L=10^{-11} \times \\
{\left[\begin{array}{rrrrrrr}
10.80 & 8.51 & 7.22 & 6.45 & 5.90 & 5.47 & 5.13 \\
8.51 & 10.80 & 8.51 & 7.22 & 6.45 & 5.90 & 5.47 \\
7.22 & 8.51 & 10.80 & 8.51 & 7.22 & 6.45 & 5.90 \\
6.45 & 7.22 & 8.51 & 10.80 & 8.51 & 7.22 & 6.45 \\
5.90 & 6.45 & 7.22 & 8.51 & 10.80 & 8.51 & 7.22 \\
5.47 & 5.90 & 6.45 & 7.22 & 8.51 & 10.80 & 8.51 \\
5.13 & 5.47 & 5.90 & 6.45 & 7.22 & 8.51 & 10.80
\end{array}\right]} \\
L(1: 2,1: 2)^{-1}=10^{10} \times\left[\begin{array}{rrr}
\mathbf{2 . 4 4} & -\mathbf{- 1 . 9 2} \\
-\mathbf{1 . 9 2} & 2.44
\end{array}\right] \\
L(1: 3,1: 3)^{-1}=10^{10} \times\left[\begin{array}{rrrr}
2.48 & -\mathbf{- 1 . 7 0} & -0.31 \\
-\mathbf{- 1 . 7 0} & \mathbf{3 . 6 2} & -\mathbf{1 . 7 0} \\
-0.31 & \mathbf{- 1 . 7 0} & 2.48
\end{array}\right]
\end{gathered}
$$

Windowing Technique

$$
\begin{aligned}
& L=10^{-11} \times \\
& {\left[\begin{array}{rrrrrrr}
10.80 & 8.51 & 7.22 & 6.45 & 5.90 & 5.47 & 5.13 \\
8.51 & 10.80 & 8.51 & 7.22 & 6.45 & 5.90 & 5.47 \\
7.22 & 8.51 & 10.80 & 8.51 & 7.22 & 6.45 & 5.90 \\
6.45 & 7.22 & 8.51 & 10.80 & 8.51 & 7.22 & 6.45 \\
5.90 & 6.45 & 7.22 & 8.51 & 10.80 & 8.51 & 7.22 \\
5.47 & 5.90 & 6.45 & 7.22 & 8.51 & 10.80 & 8.51 \\
5.13 & 5.47 & 5.90 & 6.45 & 7.22 & 8.51 & 10.80
\end{array}\right]} \\
& \hat{L}^{-1}=10^{10} \times \\
& {\left[\begin{array}{rrrrrrr}
2.44 & -\mathbf{1 . 7 0} & 0 & 0 & 0 & 0 & 0 \\
-\mathbf{1 . 7 0} & 3.62 & -\mathbf{1 . 7 0} & 0 & 0 & 0 & 0 \\
0 & -\mathbf{1 . 7 0} & 3.62 & \mathbf{- 1 . 7 0} & 0 & 0 & 0 \\
0 & 0 & -\mathbf{1 . 7 0} & 3.62 & \mathbf{- 1 . 7 0} & 0 & 0 \\
0 & 0 & 0 & \mathbf{- 1 . 7 0} & 3.62 & \mathbf{- 1 . 7 0} & 0 \\
0 & 0 & 0 & 0 & -\mathbf{1 . 7 0} & 3.62 & -\mathbf{1 . 7 0} \\
0 & 0 & 0 & 0 & 0 & \mathbf{- 1 . 7 0} & 2.44
\end{array}\right]} \\
& \text { [T. H. Chen et al. (ICCAD 2002)] }
\end{aligned}
$$

