Modeling and Analysis of VLSI Interconnects

Cheng-Kok Koh ECE Purdue University

<u>chengkok@purdue.edu</u> http://www.ece.purdue.edu/~chengkok

- Introduction
- Capacitance extraction
- Inductance modeling
- Conclusion

Interconnects do not scale well

International Technology Roadmap for Semiconductor

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013
Technology (nm)	80	70	65	57	50	45	40	36	32
Max # wiring levels	15	15	15	16	16	16	16	16	17
M1 RC (ps)	440	612	767	1044	1388	1782	2392	2857	3451
M1 resistivity (μΩ-cm)	3.15	3.29	3.47	3.67	3.90	4.08	4.30	4.63	4.83
M1 capacitance (pF/cm)	2.0- 2.2	2.0- 2.2	1.8- 2.0	1.9- 2.1	1.8- 2.0	1.8- 2.0	1.8- 2.0	1.6- 1.8	1.6- 1.8
Global wire RC (ps)	111	165	209	316	410	523	687	787	977
Global wire resistivity (μΩ-cm)	2.53	2.62	2.73	2.87	3.00	3.10	3.22	3.39	3.52
Global wire capacitance (pF/cm)	2.1- 2.3	2.1- 2.3	1.8- 2.0	1.8- 2.0	1.7- 1.9	1.7- 1.9	1.7- 1.9	1.5- 1.7	1.5- 1.7

[ITRS'05 and '06, http://www.itrs.net)]

Interconnect Modeling

- Capacitance only model
- RC model now widely used
- How about inductance?
 - Ignored at low frequency (ωL«R)
- Inductance can no longer be ignored
 - Increasing operation frequency
 - Lower wire resistance

Partial Element Equivalent Circuit

PEEC Model [A. Ruehli, IBM Journal of R&D, 1972]

Interconnect Modeling Challenge

- Extraction of RLC parameters and simulation of interconnects are large scale problems
- Long interconnects have to be divided into several segments

- Introduction
- Capacitance extraction
- Inductance modeling
- Conclusion

What is capacitance?

- Simplest model: parallel-plate capacitor
- Two parallel plates and homogeneous dielectric between them
- The capacitance is $C = \varepsilon \frac{A}{d}$
 - ε: permittivity of dielectric
 - A: area of plate
 - d: distance between plates
- The capacitance is the capacity to store charge
 - Total charge at each plate is Q = CV
 - One is positive, the other is negative

On-chip interconnects as capacitors

 Conductors: metal wire, via, polysilicon, substrate

Dielectrics: SiO₂,...

cross-section

victim

Multiconductor systems

- The presence of charge on any one of the conductors affects the potential of all the others
- Linear proportionality between potential and charge

$$V_{1} = p_{11}Q_{1} + p_{12}Q_{2} + \dots + p_{1N}Q_{N}$$

$$V_{2} = p_{21}Q_{1} + p_{22}Q_{2} + \dots + p_{2N}Q_{N}$$

$$\vdots$$

$$V_{N} = p_{N1}Q_{1} + p_{N2}Q_{2} + \dots + p_{NN}Q_{N}$$

$$3$$

Electric potential

Electric potential at R due to n charged bodies q₁, ..., q_n, located at R'₁, ..., R'_n

$$V = \frac{1}{4\pi\varepsilon} \sum_{k=1}^{n} \frac{q_k}{\left|\mathbf{R} - \mathbf{R}'_k\right|} \qquad \mathbf{R} \qquad \mathbf{R'}$$

 Electric potential due to a continuous distribution of charge confined in a given region:

$$V = \frac{1}{4\pi\varepsilon} \int_{V'} \frac{\rho}{R} dv' \qquad V = \frac{1}{4\pi\varepsilon} \int_{S'} \frac{\rho_s}{R} ds' \qquad V = \frac{1}{4\pi\varepsilon} \int_{L'} \frac{\rho_l}{R} dl'$$
volume surface line

(Partial) Capacitance matrix

Inverting the system of linear equations

 $V_N = p_{N1}Q_1 + p_{N2}Q_2 + \dots + p_{NN}Q_N \qquad Q_N = c_{N1}V_1 + c_{N2}V_2 + \dots + c_{NN}V_N$

- The c_{ii}'s are coefficients of capacitance (self capacitance)
- The c_{ij}'s (i ≠ j) are coefficients of induction (coupling capacitance)

 $O(n^3)$ for Gaussian elimination, $O(n^{2.807})$ [Strassen 1969], $O(n^{2.376})$ [Coppersmith and Winograd 1990]

Framework for numerical method

- Assume voltage [0, 0, ..., 1, ..., 0], i.e., only conductor *i* has unit voltage
- 2. Compute charge q_i for every conductor j
- 3. Obtain mutual cap $c_{ij} = q_{j'}$ and total cap $c_{ii} = q_{j'}$
- 4. Iterate through steps 1-3 using different voltage assignments

Integral equation approach

- Discretize the surfaces of *m* conductors into a total of *n* panels
- Write down potential coefficient matrix and linear system Pq = v 1

$$P_{ij} = \frac{1}{\operatorname{area}(A_i)}$$
$$\times \int_{x_i \in A_i} \frac{1}{\operatorname{area}(A_j)} \int_{x_j \in A_j} \frac{1}{4\pi\epsilon_0 ||x_i - x_j||} \, da_j da_i$$

- Set $v_k = 1$ if panel k is on the j-th conductor, and $v_k = 0$ otherwise
- Solve for panel charge q and sum all the panel charge on the *i*-th conductor $C_{ij} = \sum_{k \in \text{conductor } i} q_k$

Numerical solution by method of conjugate gradient

- Initial guess $\mathbf{q}_{(0)} = \mathbf{0}$
- Residual $r_{(i)} = v Pq_{(i)}$

Iterate

- Initialize search direction and residual $\mathbf{d}_{(0)} = \mathbf{r}_{(0)} = \mathbf{v}$
 - $\alpha_{(i)} = \frac{\mathbf{r}_{(i)}^T \mathbf{r}_{(i)}}{\mathbf{d}_{(i)}^T \mathbf{P} \mathbf{d}_{(i)}}$ $\mathbf{q}_{(i+1)} = \mathbf{q}_{(i)} + \alpha_{(i)} \mathbf{d}_{(i)}$ $\mathbf{r}_{(i+1)} = \mathbf{r}_{(i)} - \alpha_{(i)} \mathbf{P} \mathbf{d}_{(i)}$ $\beta_{(i+1)} = \frac{\mathbf{r}_{(i+1)}^T \mathbf{r}_{(i+1)}}{\mathbf{r}_{(i)}^T \mathbf{r}_{(i)}}$ $\mathbf{d}_{(i+1)} = \mathbf{r}_{(i+1)} + \beta_{(i+1)} \mathbf{d}_{(i)}$

Fast multi-pole method (FMM)

- Bottleneck is in the computation of the potential on all panels, i.e., matrix-vector multiply Pd_(i)
- Known as the n-body problem, can be solved in O(n) without loss in accuracy (machine precision) using FMM [Greengard-Rohklin] and [Appel]
- Basic idea: Potential due to a cluster of particles at some distance can be approximated with a single term
- FastCap from MIT [Nabors-White] and hierarchical capacitance extraction from Texas-A&M [Shi et al] used different forms of FMM in the iterative solvers

Hierarchical partitioning

- R_i = longest dimension of panel i
- If $P_{\epsilon} < P_{ij} \times R_i$ ($\approx R_i / r_{ij}$), subdivide the panel
- Record potential coefficient between two panels otherwise

Binary trees with cross links

 Cross links record the potential coefficient between two panels

O(1) number of cross links per node

- Two panels interact directly only if r_{ij} > R_i × P_ε, i.e., there are k panels between them
- Otherwise, parent nodes would have interacted

Equivalent potential coefficient matrix

Matrix-vector multiply: Pq = v

C.potential

- $= P_{CB}F.charge + P_{CB}G.charge + P_{CB}G.charge + P_{CB}E.charge + P_{CC}C.charge + P_{CC}M.charge + P_{CI}M.charge + P_{CI}N.charge + P_{CI}L.charge + P_{CI}J.charge + P_{CJ}J.charge + P_$
 - = P_{CB}B.charge + P_{CC}C.charge + P_{CI}I.charge + P_{CJ}J.charge

O(n) matrix-vector multiply

- Bottom-up traversal of trees, propagate charge at leaf nodes upwards
 - D.charge = F.charge + G.charge = $d_{(i),F} + d_{(i),G}$
 - B.charge = D.charge + E.charge = D.charge + d_{(i),E}
 - A.charge = B.charge + C.charge = B.charge + $d_{(i),C}$

O(n) matrix-vector multiply

- Potential at node j = potential due to cross links at node (P_{jk}d_{(i),k}) + potential of parent
- Top-down traversal of trees, propagate potential at root nodes downwards
 - A.potential = 0
 - B.potential = A.potential + $P_{BC}C.charge + P_{BJ}J.charge$
 - D.potential = B.potential + $P_{DE}E.charge + P_{DL}L.charge$
 - F.potential = D.potential + $P_{F{FGMN}}{FGMN}$.charge

Summary

- For *n* panels, *O(n)* fast matrix-vector multiply based on FMM
- Tree structures with cross links to facilitate O(n) matrix-vector multiply by bottom-up and top-down tree traversals
- O(kn) time complexity for each solve of conductor charge, k being the number of iterations
- Assume *m* conductors with *n* panels, overall complexity is *O(kmn)*

- Introduction
- Capacitance extraction
- Inductance modeling
- Conclusion

- Coupling capacitance
 - Limited to adjacent neighbors
 - Limited to adjacent layers

- Mutual Inductance
 - Not limited to adjacent wires
 - Not limited to adjacent layers
 - Exists among all parallel wires

L is FULL

R is diagonal C is tridiagonal

Questions

- Is there sparsity pattern related with L?
- How can we exploit such sparsity pattern in the simulation of RLC on-chip interconnects?

Locality of Capacitive Coupling

Is Inductive Coupling Localized?

Sparsity Resident in L⁻¹

$$L = 10^{-11} \times$$

Г	10.80	8.51	7.22	6.45	5.90	5.47	ך 5.13
	8.51	10.80	8.51	7.22	6.45	5.90	5.47
	7.22	8.51	10.80	8.51	7.22	6.45	5.90
	6.45	7.22	8.51	10.80	8.51	7.22	6.45
	5.90	6.45	7.22	8.51	10.80	8.51	7.22
	5.47	5.90	6.45	7.22	8.51	10.80	8.51
L	5.13	5.47	5.90	6.45	7.22	8.51	10.80

 $L^{-1} = 10^{10} \times$

Г	2.53	-1.67	-0.12	-0.12	-0.08	-0.05	-0.11 J
	-1.67	3.63	-1.60	-0.04	-0.07	-0.04	-0.05
	-0.12	-1.60	3.64	-1.59	-0.04	-0.07	-0.08
	-0.12	-0.04	-1.59	3.64	-1.59	-0.04	-0.12
	-0.08	-0.07	-0.04	-1.59	3.64	-1.60	-0.12
	-0.05	-0.04	-0.07	-0.04	-1.60	3.63	-1.67
L	-0.11	-0.05	-0.08	-0.12	-0.12	-1.67	2.53

Why sparsity in L⁻¹?

$$M = \frac{\mu}{4\pi A_i A_j} \int_{A_i} \int_{A_j} \int_{L_i} \int_{L_j} \frac{dl_i \cdot dl_j}{R} da_j da_i$$

Similar to scalar potential coefficients encountered in capacitance extraction

$$P_{ij} = \frac{1}{\operatorname{area}(A_i)} \times \int_{x_i \in A_i} \frac{1}{\operatorname{area}(A_j)} \int_{x_j \in A_j} \frac{1}{4\pi\epsilon_0 ||x_i - x_j||} \, da_j da_i$$

[A. Devgan et al. (ICCAD 2000)]

Direct Truncation

$L = 10^{-11} \times$									
Γ	10.80	8.51	7.22	6.45	5.90	5.47	ך 5.13		
	8.51	10.80	8.51	7.22	6.45	5.90	5.47		
	7.22	8.51	10.80	8.51	7.22	6.45	5.90		
	6.45	7.22	8.51	10.80	8.51	7.22	6.45		
	5.90	6.45	7.22	8.51	10.80	8.51	7.22		
	5.47	5.90	6.45	7.22	8.51	10.80	8.51		
	5.13	5.47	5.90	6.45	7.22	8.51	10.80		

 $k^{-1} = 10^{10} \times$

Г	2.53	-1.67	0	0	0	0	С (
	-1.67	3.63	-1.60	0	0	0	0
	0	-1.60	3.64	-1.59	0	0	0
	0	0	-1.59	3.64	-1.59	0	0
	0	0	0	-1.59	3.64	-1.60	0
ĺ	0	0	0	0	-1.60	3.63	-1.67
L	0	0	0	0	0	-1.67	2.53

Ł Matrix Contains Redundancy

Ł Matrix Contains Redundancy

Numerical Example

Numerical Example

Windowing Technique

 $L = 10^{-11} \times$

Г	10.80	8.51	7.22	6.45	5.90	5.47	ך 5.13
	8.51	10.80	8.51	7.22	6.45	5.90	5.47
	7.22	8.51	10.80	8.51	7.22	6.45	5.90
	6.45	7.22	8.51	10.80	8.51	7.22	6.45
	5.90	6.45	7.22	8.51	10.80	8.51	7.22
	5.47	5.90	6.45	7.22	8.51	10.80	8.51
L	5.13	5.47	5.90	6.45	7.22	8.51	10.80

$$L(1:2,1:2)^{-1} = 10^{10} \times \begin{bmatrix} 2.44 & -1.92 \\ -1.92 & 2.44 \end{bmatrix}$$

$$L(1:3,1:3)^{-1} = 10^{10} \times \begin{bmatrix} 2.48 & -1.70 & -0.31 \\ -1.70 & 3.62 & -1.70 \\ -0.31 & -1.70 & 2.48 \end{bmatrix}$$

Windowing Technique

 $L = 10^{-11} \times$

Г	10.80	8.51	7.22	6.45	5.90	5.47	ך 5.13
	8.51	10.80	8.51	7.22	6.45	5.90	5.47
	7.22	8.51	10.80	8.51	7.22	6.45	5.90
	6.45	7.22	8.51	10.80	8.51	7.22	6.45
	5.90	6.45	7.22	8.51	10.80	8.51	7.22
	5.47	5.90	6.45	7.22	8.51	10.80	8.51
L	5.13	5.47	5.90	6.45	7.22	8.51	10.80

 $\hat{L}^{-1} = 10^{10} \times$

Г	2.44	-1.70	0	0	0	0	0 7
	-1.70	3.62	-1.70	0	0	0	0
	0	-1.70	3.62	-1.70	0	0	0
	0	0	-1.70	3.62	-1.70	0	0
	0	0	0	-1.70	3.62	-1.70	0
	0	0	0	0	-1.70	3.62	-1.70
L	0	0	0	0	0	-1.70	2.44

[T. H. Chen et al. (ICCAD 2002)]