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Transistor/Gate delay 

Interconnect delay

[ Gordon Moore, Chairman Emeritus, Intel Corp.]
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Interconnects do not scale well



International Technology 
Roadmap for Semiconductor

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 
Technology (nm) 80 70 65 57 50 45 40 36 32 

Max # wiring  
levels 

15 15 15 16 16 16 16 16 17 

M1 RC (ps) 440 612 767 1044 1388 1782 2392 2857 3451 
M1 resistivity  

(μΩ-cm) 
3.15 

 
3.29 3.47 3.67 3.90 4.08 4.30 4.63 4.83 

M1 capacitance 
(pF/cm) 

2.0-
2.2 

2.0-
2.2 

1.8-
2.0 

1.9-
2.1 

1.8-
2.0 

1.8-
2.0 

1.8-
2.0 

1.6-
1.8 

1.6-
1.8 

Global wire  
RC (ps) 

111 165 209 316 410 523 687 787 977 

Global wire  
resistivity   
(μΩ-cm) 

2.53 2.62 2.73 2.87 3.00 3.10 3.22 3.39 3.52 
 

Global wire 
capacitance  

(pF/cm) 

2.1-
2.3 

2.1-
2.3 

1.8-
2.0 

1.8-
2.0 

1.7-
1.9 

1.7-
1.9 

1.7-
1.9 

1.5-
1.7 

1.5-
1.7 

 

 

[ITRS’05 and ’06, http://www.itrs.net)]



Interconnect Modeling

Capacitance only model
RC model now widely used
How about inductance?

Ignored at low frequency (ωL«R)
Inductance can no longer be ignored

Increasing operation frequency
Lower wire resistance

C

Rdriver receiver



Partial Element Equivalent Circuit

PEEC Model [A. Ruehli, IBM Journal of R&D, 1972]
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Interconnect Modeling Challenge

Extraction of RLC parameters and simulation 
of interconnects are large scale problems
Long interconnects have to be divided into 
several segments
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What is capacitance?

Simplest model: parallel-plate capacitor
Two parallel plates and homogeneous 
dielectric between them
The capacitance is

ε: permittivity  of dielectric
A: area of plate
d: distance between plates

The capacitance is the capacity to store 
charge

Total charge at each plate is
One is positive, the other is negative                
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On-chip interconnects as capacitors

Conductors:  metal wire, via, 
polysilicon, substrate
Dielectrics: SiO2 ,...

victim victim

cross-section top-view



Multiconductor systems

The presence of charge on any one of 
the conductors affects the potential of 
all the others
Linear proportionality between potential 
and charge
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Electric potential

Electric potential at R due to n charged 
bodies q1, …, qn, located at R’1, …, R’n

Electric potential due to a continuous 
distribution of charge confined in a given 
region:
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(Partial) Capacitance matrix
Inverting the system of linear equations

The cii’s are coefficients of capacitance (self 
capacitance)
The cij’s (i ≠ j) are coefficients of induction 
(coupling capacitance)
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O(n3) for Gaussian elimination, O(n2.807) [Strassen 1969],
O(n2.376) [Coppersmith and Winograd 1990]



Framework for numerical method
1. Assume voltage [0, 0, …, 1, …, 0], i.e., only 

conductor i has unit voltage
2. Compute charge qj for every conductor j
3. Obtain mutual cap cij =qj, and total cap cii

=qi
4. Iterate through steps 1-3 using different 

voltage assignments
0 1 0 0V =

C =
0 c12 0 0
c21 c22 c23 c24
0 c32 0 0
0 c42 0 0

m2

m1 m3

m4

c21 c23

c24
victim



Integral equation approach

Discretize the surfaces of m
conductors into a total of n
panels
Write down potential 
coefficient matrix and linear 
system Pq = v

Set vk = 1 if panel k is on the j-th conductor, and vk
= 0 otherwise
Solve for panel charge q and sum all the panel 
charge on the i-th conductor Cij = Σk∈conductor i qk



Numerical solution by
method of conjugate gradient

Initial guess
Residual r(i) = v – Pq(i)

Initialize search direction and residual
Iterate

= v



Fast multi-pole method (FMM)

Bottleneck is in the computation of the potential 
on all panels, i.e., matrix-vector multiply Pd(i)

Known as the n-body problem, can be solved in 
O(n) without loss in accuracy (machine precision) 
using FMM [Greengard-Rohklin] and [Appel]
Basic idea: Potential due to a cluster of particles 
at some distance can be approximated with a 
single term
FastCap from MIT [Nabors-White] and 
hierarchical capacitance extraction from Texas-
A&M [Shi et al] used different forms of FMM in 
the iterative solvers



Hierarchical partitioning

Ri = longest dimension of panel i
If Pε < Pij × Ri (≈ Ri / rij), subdivide the panel
Record potential coefficient between two 
panels otherwise

A
C

B

C

E
F G

H
I

J J

L
M N



Binary trees with cross links

Cross links record the potential coefficient 
between two panels
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O(1) number of cross links per node

Two panels interact directly only if rij > Ri × Pε, i.e., 
there are k panels between them
Otherwise, parent nodes would have interacted



Equivalent potential coefficient matrix
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Matrix-vector multiply: Pq = v
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O(n) matrix-vector multiply

Bottom-up traversal of trees, propagate charge at 
leaf nodes upwards

D.charge = F.charge + G.charge = d(i),F + d(i),G

B.charge = D.charge + E.charge = D.charge + d(i),E

A.charge = B.charge + C.charge = B.charge + d(i),C

Collect charge
Charge at node = total 
charge at descendant 
leaf nodes (d(i))
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Matrix-vector multiply
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B.potential = 
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O(n) matrix-vector multiply

Top-down traversal of trees, propagate potential at 
root nodes downwards

A.potential = 0
B.potential = A.potential + PBCC.charge + PBJJ.charge
D.potential = B.potential + PDEE.charge + PDLL.charge
F.potential = D.potential + PF{FGMN}{FGMN}.charge

Potential at node j = 
potential due to cross 
links at node (Pjkd(i),k) 
+ potential of parent
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Summary

For n panels, O(n) fast matrix-vector multiply 
based on FMM
Tree structures with cross links to facilitate 
O(n) matrix-vector multiply by bottom-up and 
top-down tree traversals
O(kn) time complexity for each solve of 
conductor charge, k being the number of 
iterations
Assume m conductors with n panels, overall 
complexity is O(kmn)
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Capacitive Coupling Property

Coupling capacitance
Limited to adjacent neighbors
Limited to adjacent layers



Inductive Coupling Property

Mutual Inductance
Not limited to adjacent wires
Not limited to adjacent layers
Exists among all parallel wires



RLC Matrices

R is diagonal C is tridiagonal L is FULL



Questions

Is there sparsity pattern related with L?
How can we exploit such sparsity
pattern in the simulation of RLC on-chip 
interconnects?



Locality of Capacitive Coupling

≈ zero



Is Inductive Coupling Localized?

zero ?



Sparsity Resident in L-1



Why sparsity in L–1?
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Similar to scalar potential coefficients
encountered in capacitance extraction



L-1 matrix suggests locality

invert truncateL L-1

[A. Devgan et al. (ICCAD 2000)]

Ł-1



Direct Truncation

Ł-1



Ł Matrix Contains Redundancy
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Ł-1 Ł



Ł Matrix Contains Redundancy



Numerical Example
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Numerical Example
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Windowing Technique



Windowing Technique

[T. H. Chen et al. (ICCAD 2002)]
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