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Differential Conductivity  
(Transport Distribution Function) 

eq 

eq 

(conduction band) 

(valence band) 
 : sum of bands 

Comparison with Landauer  

formalism in diffusive limit  

(see week 2 lectures) 
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The thermoelectric material properties simulation tool  

https://nanohub.org/tools/btesolver 
Built-in 

materials 
library 

Customizable 
band structure 
(Max. 2 cond. 

bands and 2 val. 
Bands) 

Convenient 
graphical user 
interface for  

band structure 
edits 

Band properties 
as a function of 

composition x and 
temperature T 
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The thermoelectric material properties simulation tool  

https://nanohub.org/tools/btesolver 
Three scattering 

options: 
1. Constant  
2. Constant m.f.p. 
3. Realistic E-dependent 

(E) 

Enable/disable 
specific scattering 

mechanisms 
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1-1. In a single non-parabolic band (n-type In0.53Ga0.47As) 

The effective mass 
and 

nonparabolicity 
are a function of 

composition x 
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1-1. In a single non-parabolic band (n-type In0.53Ga0.47As) 

2nd phase: 

3rd phase: 
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1-1 & 1-2. Differential conductivity vs. energy 

d with EF = 0.1 eV  

d with EF = 0.0 eV  
DOS 

S = - 95.0 μV/K 
 = 843.2 Ω-1cm-1 

S = - 242.5 μV/K 
 = 105.7 Ω-1cm-1 
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1-3 & 1-4. Seebeck coeff. and electrical cond. trade-off  

Carrier concentration scan from 1e17 to 1e19 cm-3 

 

S 

n-InGaAs 
300 K 
 = 0.1 ps 
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1-3 & 1-4. Optimal carrier concentrations for PF and ZT 

 

PF 

n-InGaAs 
300 K 
 = 0.1 ps 

ZT 

n = 8.4e17 cm-3  
for PFmax= 8.02 μW/cmK2 

n = 6.6e17 cm-3  
for ZTmax= 0.057 
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1-3 & 1-4.  

(cont’d) 

n-InGaAs 
300 K 
 = 0.1 ps 

Electronic thermal conductivity increases with carrier concentration 

l = 4.0 W/mK (input) 
e = 0.29 W/mK (calculated) 
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2-1 

Prob. 2. Influence of a secondary band 

Add a secondary 
conduction band  

by choosing  
“double conduction  

bands” option 

0.1 eV 
m* = 0.041 m0 

 = 1.167 eV-1 

Band degeneracy =1 

m* = 0.1 m0 

 = 0 eV-1 

Band degeneracy =1 
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2-1 

300 K 
 = 0.1 ps 

d with single band 

d with double bands 

DOS with single band 

DOS with double bands 

Single band 
S = - 95.0 μV/K 
 = 843.2 Ω-1cm-1 

Double bands 
S = - 120.1 μV/K 
 = 1013.8 Ω-1cm-1 
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2-2 Correct statement? 
a. The Seebeck coefficient decreased due to the existence of the 

secondary conduction band because of additional scattering. 

b. The Seebeck coefficient increased because the secondary band 
increased the differential conductivity above the Fermi level while 
the differential conductivity below the Fermi level remained the 
same, so that the degree of asymmetry of the differential 
conductivity around the Fermi level increased. 

c. The electrical conductivity decreased because the Seebeck 
coefficient increased by the influence of the secondary band and 
there are a trade-off between the Seebeck coefficient and the 
electrical conductivity. 

d. The electrical conductivity increased because the secondary band 
added more states within the Fermi window. 

Implication of band convergence effect 
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Convergence of the two 
conduction bands at X 
valley for x=0.6~0.8 

Band gap needs to be 
large enough to 
minimize the bipolar 
effects. 

< First Brillouin zone > 
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ZTmax = 1.1 for x=0.6 

700 K 
x=0.6 

0.8 0.4 

1.0 

0.2 

3-1.  

Composition  

and carrier 

concentration  

co-optimization 
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Power factor 
x=0.6 

0.8 

0.4 

1.0 

0.2 

Seebeck 

|S| 
Increase x=0.6 

0.8 
0.4 

0.2 

1.0 

Electrical conductivity 

x=0.6 

0.2 
0.4 

0.8 
1.0 

Total thermal conductivity 

x=0.6 

0.2 
0.4 

0.8 

1.0 

Large bipolar  
due to smaller  
band gap 

Large Seebeck 
due to band  
convergence 
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Prob. 3. Mg2SnxSi1-x solid solution (Sn content) 
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3-2. Band convergence and bipolar thermal conductivity 

a. Large Seebeck coefficients due to the larger separation of the 
two conduction bands  

b. Large Seebeck coefficients due to the convergence of the two 
conduction bands 

c. Large electrical conductivity due to the relatively lighter effective 
mass 

d. Large electrical conductivity due to the relatively heavier 
effective mass 

e. Smaller electronic thermal conductivity due to smaller lattice 
thermal conductivity 

f. Smaller electronic thermal conductivity due to the smaller 
bipolar electronic thermal conductivity with a larger band gap 
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L valley 

L Σ 

Eg=0.169+5.02e-4*T (eV)  

me= 0.079m0 

mh,L=0.084m0 
mh,Σ=0.368m0 

Band structure of PbTe 

Egv=0.237-0.42e-3*T (eV)  

(Room temperature) 

All temperature-dependent 

Valence bands  
convergence 

: Band  
degeneracy =4 

: Band degeneracy = 12 

< First Brillouin zone > 

[Vineis et al. Phys. Rev. B 77, 235202 (2008)] 
[Ravich et al. Phys. Status Solidi B 43, 453 (1971)] 

 
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PbTe material 
selection 

One conduction band 
Two valence bands 
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Energy-dep. 
scatterings 

1. Acoustic /optical phonon deformation 
potential scattering 

2. Ionized impurity scattering 
3. Polar optical phonon scattering 
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4-1. 

p-PbTe 

600 K  S 

 

Bipolar  
transport 

Trade-off 



Bahk & Shakouri nanoHUB-U Fall 2013 
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4-1. 

p-PbTe 

600 K  

total 

lattice= 1.2 W/mK 
electronic 

bipolar 

Bipolar  
effect 
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4-1. 

p-PbTe 

600 K  ZT 

Bipolar  
transport 

regime 

PF 

1.9e20 

9.6e19 

ZTmax =1.71 at h=9.6e19 cm-3 at 600 K 

High 
electronic 
regime 



Bahk & Shakouri nanoHUB-U Fall 2013 

Prob. 4. Doping optimization of p-type PbTe 

24 

4-2. 

p-PbTe 

900 K  
S 600 K 

 600 K 

S 900 K 

 900 K 

Bipolar effect 
occurs earlier 

at higher T 

Stronger phonon 
scattering 
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4-2. 

p-PbTe 

900 K  

total 
600K 

l 
e 900K 

Bipolar  
effect total 

900K 

l= 1.2 W/mK @600K 
l= 1.0 W/mK @ 900K 

By  reduction 
(Wiedemann-Franz) 

e 600K 
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4-2. 

p-PbTe 

900 K  ZT 600K 

PF 600K 

ZT 900K 

PF 900K 

ZTmax =1.49 at 
h=2.2e20 cm-3, 900 K 

Large reduction of  
due to stronger phonon 
scattering at higher T 

Bipolar regime 
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Na-doped PbTe Na-doped SrTe:PbTe 

[Biswas et al.(Kanatzidis group), Nature 489, 414 (2012)] 

Spark-plasma-sintered Na(2%)-doped p-type PbTe:SrTe(4%)  

SPS 

• All-scale hierarchical structures for 
thermal conductivity reduction. 

• Electron transport near optimal. 
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5-1 & 5-2. Hole concentration and  at 900 K 

S = 260~280  

 = 250~300  

h = 9e19 ~ 1.5e20 cm-3 

Above 9e19 
cm-3 (RT hole 
conc.) 

S = 260~280  

 = 280 ~ 400 

Slightly reduced due to additional carrier 
scattering by nanostructures/grain boundaries 
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5-3. Thermal conductivity at 900 K 

Total thermal 
conductivity 

κtotal=1.0 

κe = 0.7 W/mK 
(including bi) 

κbi = 0.3 W/mK 

 κl = κtotal  κe = 1.0 - 0.7 = 0.3 W/mK 
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: Electrical conductivity 

: Seebeck coefficient 

Differential Conductivity 

eq 

eq 

(conduction band) 

(valence band) 
 : sum of bands 

: Electronic thermal  

   conductivity  

Boltzmann transport with a cut-off energy 
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J.-H. Bahk et al., Phys. Rev. B 87, 075204 (2013) 

300 K 

EF=0.1 eV (const.) 

r=0.5 

Power factor enhancement 

e = LT 

Electronic thermal conductivity reduction 
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p-type PbTe 
900 K 
EC = 0.1 eV 

S with filtering 

 with filtering 

S bulk 

 bulk 
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p-type PbTe 
900 K 
EC = 0.1 eV 

e with filtering 

e bulk 
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Prob. 6. Carrier energy filtering in PbTe at 900 K 
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p-type PbTe 
900 K 
EC = 0.1 eV 

ZT bulk 

ZT with filtering 

PF with filtering 

ZTmax =4.9 at h=7.6e20 cm-3, 
900 K with Ec = 0.1 eV 

PF bulk 

ZTmax =2.4 at h=1.9e20 cm-3,  
for bulk PbTe (l = 0.3 W/mK) 
900 K 


