Thermoelectricity: From Atoms to Systems

Week 5: Recent advances in thermoelectric materials and physics Tutorial 5.1 <u>Homework solutions</u>, problems 1-6

By Je-Hyeong Bahk and Ali Shakouri Electrical and Computer Engineering Birck Nanotechnology Center Purdue University

<u>Differential Conductivity</u> (Transport Distribution Function)

$$\sigma_d(E) = e^2 \tau(E) v_x^2(E) \rho_{DOS}(E) \left(-\frac{\partial f_0(E)}{\partial E}\right)$$

$$ZT = \frac{S^2 \sigma}{\kappa_l + \kappa_e} T$$

$$\sigma = \sum \int \sigma_d (E) dE$$

$$S = \sum \left(\frac{k_B}{q}\right) \int \left[\frac{(E - E_F)}{k_B T}\right] \frac{\sigma_d \left(E\right)}{\sigma} dE$$

$$\kappa_{e} = \sum T \left(\frac{k_{B}}{q}\right)^{2} \int \left[\frac{E - E_{F}}{k_{B}T}\right]^{2} \sigma_{d} (E) dE - S^{2} \sigma T$$

Comparison with Landauer formalism in diffusive limit (see week 2 lectures)

$$\tau(E) v_x^2(E) \rho_{DOS}(E) = \frac{2L}{hA} M(E) T(E)$$

 $\begin{cases} q = -e & \text{(conduction band)} \\ q = +e & \text{(valence band)} \end{cases}$

The thermoelectric material properties simulation tool

https://nanohub.org/tools/btesolver

The thermoelectric material properties simulation tool https://nanohub.org/tools/btesolver

Three scattering	Band Structure + 2 Scattering Properties	• • ③ Simulation Parameters + ④ Simulate
 options: Constant τ Constant m.f.p. Realistic E-dependent τ(E) 	Attering Options: Energy-Dependent Scatterin Constant Scattering Time Constant Scattering Time Lattice consta Constant Mean Free Path Mass density (k Energy-Dependent Scatterin Elastic modulus (N/m^2): 10.2e10 Acoustic phonon deformation potential scatterin Enable: ges Ac. ph. deform. potential (eV): 5.92	Ig Time Ig Time Optical phonon energy (eV): .0314*(1-x)+0.0376*x Ing Optical phonon deformation potential scattering Enable: Image Inc
Enable/disable – specific scattering mechanisms	Ionized impurity scattering Enable: • • • • yes Compensation ratio: 1 Polar optical phonon scattering Enable: • • • • yes r-factor (energy exponent): •49	Defect vacancy deformation potential scattering Enable: In In

1-1. In a single non-parabolic band (n-type $In_{0.53}Ga_{0.47}As$)

Select "n-InGaAlAs - n-type Indium Gallium Aluminum Arsenide"

1-1. In a single non-parabolic band (n-type $In_{0.53}Ga_{0.47}As$)

1-1 & 1-2. Differential conductivity vs. energy

1-3 & 1-4. Seebeck coeff. and electrical cond. trade-off

Carrier concentration scan from 1e17 to 1e19 cm⁻³

1-3 & 1-4. Optimal carrier concentrations for PF and ZT

NANOHUB PURDUE

Prob. 2. Influence of a secondary band

Add a secondary conduction band by choosing "double conduction bands" option

2-1

Prob. 2. Influence of a secondary band

Prob. 2. Influence of a secondary band

2-2 Correct statement? Implication of band convergence effect

- a. The Seebeck coefficient decreased due to the existence of the secondary conduction band because of additional scattering.
- b. The Seebeck coefficient increased because the secondary band increased the differential conductivity above the Fermi level while the differential conductivity below the Fermi level remained the same, so that the degree of asymmetry of the differential conductivity around the Fermi level increased.
- c. The electrical conductivity decreased because the Seebeck coefficient increased by the influence of the secondary band and there are a trade-off between the Seebeck coefficient and the electrical conductivity.
- d. The electrical conductivity increased because the secondary band added more states within the Fermi window.

Prob. 3. $Mg_2Sn_xSi_{1-x}$ solid solution

Prob. 3. $Mg_2Sn_xSi_{1-x}$ solid solution

Prob. 3. $Mg_2Sn_xSi_{1-x}$ solid solution

Prob. 3. $Mg_2Sn_xSi_{1-x}$ solid solution (Sn content)

3-2. Band convergence and bipolar thermal conductivity

- a. Large Seebeck coefficients due to the larger separation of the two conduction bands
- b. Large Seebeck coefficients due to the convergence of the two conduction bands
- c. Large electrical conductivity due to the relatively lighter effective mass
- d. Large electrical conductivity due to the relatively heavier effective mass
- e. Smaller electronic thermal conductivity due to smaller lattice thermal conductivity
- f. Smaller electronic thermal conductivity due to the smaller bipolar electronic thermal conductivity with a larger band gap

E	Band Structure + ② Scattering Properties + ③ Simulation Parameters + ④ Simulate Scattering Options: Energy-Dependent Scattering Time					
Energy-dep.						
scatterings	Lattice constant (m): 6.46e-10		Sta	Static dielectric constant: 400		
	Mass density (kg/m^3): 8.24e3		High fr	High freq. dielectric constant: 33		
	Elastic modulus (N/m^2): 6.3e10		Optica	Optical phonon energy (eV): .0136		
	Acoustic p	phonon deformation potential scatter		Optical phonon deform	nation potential scattering	
Enab		ile: 🥃 📑 yes		Enable: 🔍 📑 yes		
	Ac. ph. d	Ac. ph. deform. potential (eV): 18		Opt. ph. deform. potential (eV): 32		
		lonized impurity scattering				
	Enable: 💿 📄 yes		Defect vaca	efect vacancy deformation potential scattering		
		Compensation ratio: 1	tion ratio: 1		e: 🗣 💻 🗌 no	
		. ,				
		Polar optical phonon sca				
		Enable: P ves		Alloy scattering		
			nt), 427	Enable: 🛛 💳	no	
		r-ractor (energy expone	ny: .421			
					6	

- 1. Acoustic /optical phonon deformation potential scattering
- 2. Ionized impurity scattering
- 3. Polar optical phonon scattering

NANOHUB PURDUE

Prob. 5. Analysis of the recent Nature 2012 paper

[Biswas et al.(Kanatzidis group), Nature 489, 414 (2012)]

Spark-plasma-sintered Na(2%)-doped p-type PbTe:SrTe(4%)

- All-scale hierarchical structures for thermal conductivity reduction.
- Electron transport near optimal.

0.4

0.0

300

400

500

600

T (K)

700

800

900

Prob. 5. Analysis of the recent Nature 2012 paper

5-1 & 5-2. Hole concentration and σ at 900 K

Prob. 5. Analysis of the recent Nature 2012 paper

5-3. Thermal conductivity at 900 K

Boltzmann transport with a cut-off energy

 $ZT = \frac{S^2 \sigma T}{\kappa_e + \kappa_l + \kappa_{hi}}$

- : Electrical conductivity
- : Seebeck coefficient
- : Electronic thermal conductivity

 $\begin{cases}
q = -e & \text{(conduction band)} \\
q = +e & \text{(valence band)}
\end{cases}$

Bahk & Shakouri nanoHUB-U Fall 2013

: sum of bands

NANOHUB

p-type PbTe 900 K E_c = 0.1 eV

