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Homework Week 5: Recent Advances in Thermoelectric Materials and Physics 
Thermoelectricity: From Atoms to Systems 

 
Je-Hyeong Bahk and Ali Shakouri  

nanoHUB-U Fall 2013 
 

Answer the 14 questions including sub-questions below by choosing one, best answer. This 
homework does not count toward the final score, but solving and understanding this 
homework will be extremely helpful for passing the exam. Several homework problems are 
developed to help you familiarize with the third nanoHUB-U simulation tool (Thermoelectric 
material properties simulation tool based on the linearized Boltzmann transport equations). 

 

1. (Differential conductivity and Seebeck coefficient  electrical conductivity trade-off) In a 
single nonparabolic band structure model, the electron dispersion relation is described as  
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where E is the electron energy, k is the electron wavevector,  is the non-parabolicity, and 
*m  is the effective mass at the band edge.  

 Electron transport and thermoelectric properties of a bulk semiconductor material can be 
calculated from the Boltzmann transport equation (BTE) under the relaxation time 
approximation. They are all integral functions of the differential conductivity (Transport 
Distribution Function),  
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Where e is the electron charge, )(E  is the electron relaxation time or scattering time that 

is only a function of energy, )(Ev  is the electron velocity in one direction, )(EDOS  is the 

density of states, and )(0 Ef  is the Fermi-Dirac distribution.  Ef  /0  is the Fermi 

window. Note that the terms before the Fermi window in differential conductivity is 
identical to the M(E)T(E) product, with a constant multiplication factor, in the Landauer 
formalism in diffusive transport limit, which you learned during the week 2 lectures in this 
course.  
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The electrical conductivity σ is simply an integral of the differential conductivity over 
energy, and the mobility μ is related to the electrical conductivity by σ = neμ, where n is 
the carrier concentration, 
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where EF is the Fermi level relative to the band edge. The Seebeck coefficient S and the 
electronic thermal conductivity e are given, respectively, by 
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All of these integrals can be directly written in the electron momentum space (k-space). 
Care should be taken when variables are changed from momentum to energy as often 
integration over transverse momentum is performed in one-dimensional transport. Now, 
we can calculate the thermoelectric properties by solving these Boltzmann transport 
equations for a given band structure. The thermoelectric material properties simulation 
tool at https://nanohub.org/tools/btesolver allows us to do these calculations, providing 
convenient graphical user interfaces for band structure inputs and various simulation 
options. Visit the link and run the simulation tool to answer the following questions. 
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1-1. Here we simulate n-type InGaAlAs alloys using the simulation tool. In the first phase of the 
simulation tool, select “n-InGaAlAs – n-type Indium Gallium Aluminum Arsenide” in the 
topmost material selection pull-down menu. The band structure configuration and the 
figure will be automatically updated. The valence bands are ignored here to calculate the 
electron transport only, and the second conduction band is much higher than the first 
conduction band, so it is also ignored here. Click the blue button beside the Primary 
Conduction Band label in the figure to check the band information of the first conduction 
band. Check that the effective mass and non-parabolicity are a function of the fractional 
composition x, which is the aluminum content in (In0.53Ga0.47As)1-x(In0.52Al0.48As)x 
configuration (this particular quaternary composition is lattice matched to InP substrate). 
Enter “0” in the “x (fraction of composition)” box below the figure, so that you can 
simulate the ternary alloy In0.53Ga0.47As without Al. 

 



 

Bahk & Shakouri  nanoHUB-U Fall 2013 

In the next phase “Scattering Properties”, select “Constant Scattering Time” in the 
“Scattering Options” menu, and enter “0.1” (ps) for “Scattering Time (ps)”.  

 

In the next phase “Simulation Parameters”, select “Differential Conductivity Analysis” in 
the “Analysis type” menu. Below the menu, check that the type of carrier concentration is 
Electron as there is only a conduction band. Enter “0” eV for Fermi level, “0” eV for Cut-off 
energy level (we don’t use the cut-off in this simulation), and “300” K for Temperature.  
Enter “4.0” W/mK for the lattice thermal conductivity at this temperature. Then click 
“Simulate” to start simulation. 

After the simulation is done, check the differential conductivity and density of states 
curves as a function of electron energy, and the resulting thermoelectric properties for this 
condition.  

What are the Seebeck coefficient and the electrical conductivity of the In0.53Ga0.47As 
semiconductor at 300 K according to the simulation? Note that the actual values for real 
In0.53Ga0.47As can be different as we used a constant scattering time of 0.1 ps for simplicity 
in the first step. 

a. S = 82.5 μV/K,  = 1005.7 Ω-1 cm-1 

b. S = 142.5 μV/K,  = 505.7 Ω-1 cm-1 

c. S = 182.5 μV/K,  = 205.7 Ω-1 cm-1 

d. S = 242.5 μV/K,  = 105.7 Ω-1 cm-1  

e. S = 312.5 μV/K,  = 85.7 Ω-1 cm-1 
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1-2. Repeat the simulation with a different Fermi level of 0.1 eV this time while keeping all the 
other parameters unchanged from the previous simulation.  

What are the Seebeck coefficient and the electrical conductivity now? Check how the two 
properties have changed with increasing Fermi level. Note that the electrical conductivity is 
the total area under the differential conductivity vs. energy curve, and the magnitude of 
the Seebeck coefficient is proportional to average energy of electrons contributing to 
differential conductivity with respect to the Fermi level. 

a. S = 95.0 μV/K,  = 843.2 Ω-1 cm-1  

b. S = 132.1 μV/K,  = 515.3 Ω-1 cm-1 

c. S = 192.3 μV/K,  = 201.4 Ω-1 cm-1 

d. S = 242.5 μV/K,  = 105.7 Ω-1 cm-1  

e. S = 332.7 μV/K,  = 85.1 Ω-1 cm-1 
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1-3. Now, go back to the third phase “Simulation parameters” and switch the Analysis type to 
“Varying carrier concentration at a constant temperature”. Set “1e17” (cm-3), “1e19” (cm-

3), and “40” for Minimum carrier concentration, Maximum carrier concentration, and 
Number of carrier concentration data points, respectively. Keep the temperature at 300 K 
as well as all the other parameters.  Then Run the simulation. 

After the simulation is done, check how the electrical conductivity and the Seebeck 
coefficient vary with carrier concentration in the “Electrical conductivity and Seebeck 
coefficient vs Concentration” plot in the output phase. Note that increasing carrier 
concentration means increasing Fermi level. Due to the trade-off between the two 
properties, there is a maximum power factor at an optimal carrier concentration. What is 
the maximum power factor at this temperature and what is the optimal carrier 
concentration? 

a. PFmax = 6.02 μW/cmK2 at n = 8.4  1017 cm-3  

b. PFmax = 8.02 μW/cmK2 at n = 8.4  1017 cm-3  

c. PFmax = 10.02 μW/cmK2 at n = 6.6  1017 cm-3  

d. PFmax = 12.02 μW/cmK2 at n = 6.6  1017 cm-3  

e. PFmax = 14.02 μW/cmK2 at n = 1.3  1018 cm-3 
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1-4. (continued from Prob. 1-3) Check that the ZT is also maximized at an optimal carrier 
concentration in the previous simulation. Regarding the ZT optimization, which of the 
following statements is correct? 

a. The optimal carrier concentration that maximizes ZT is the same as the optimal 
carrier concentration that maximizes the power factor because the lattice thermal 
conductivity is fixed with varying the carrier concentration. 

b. The optimal carrier concentration that maximizes ZT is higher than the optimal 
carrier concentration that maximizes the power factor because the electronic 
thermal conductivity decreases with increasing carrier concentration. 

c. The optimal carrier concentration that maximizes ZT is lower than the optimal 
carrier concentration that maximizes the power factor because the electronic 
thermal conductivity increases with increasing carrier concentration.  

d.  The optimal carrier concentration that maximizes ZT is lower than the optimal 
carrier concentration that maximizes the power factor because the electronic 
thermal conductivity decreases with increasing carrier concentration. 

e. None of the above 
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2. (Influence of a secondary conduction band) While keeping the primary conduction band of 
the n-type InGaAs material in the simulation tool, add a secondary conduction band in the 
band structure to create an imaginary material with two conduction bands by selecting “4. 
Double Conduction Bands – No Valence Bands” in the Bands menu below the material 
selection menu in the first phase of the simulation tool. The band figure will be updated 
with a secondary conduction band added.  

Click on the blue button beside “Conduction band offset” in the figure to enter “0.1” eV for 
the band offset between the two conduction bands. Then click on the other blue button 
beside “Secondary Conduction Band” to enter “0.1” ( stationary electron mass m0) for the 
electron effective mass of the second band, “0” for the nonparabolicity, and “1” for the 
band degeneracy.   

 

Keep the constant scattering time at “0.1” ps, Fermi level at “0.1” eV, and temperature at 
“300” K in the second and third phases. Run the simulation for differential conductivity 
analysis.
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2-1. What are the Seebeck coefficient and the electrical conductivity for this material according 
to the simulation? 

a. S = 67.3 μV/K,  = 1013.8 Ω-1 cm-1 

b. S = 95.0 μV/K,  = 843.2 Ω-1 cm-1  

c. S = 95.0 μV/K,  = 645.7 Ω-1 cm-1 

d. S = 120.1 μV/K,  = 843.2 Ω-1 cm-1 

e. S = 120.1 μV/K,  = 1013.8 Ω-1 cm-1  

 

2-2. Compare these values of the Seebeck coefficient and the electrical conductivity with those 
obtained in Prob. 1-2 in the case where there was no secondary band. Which of the 
following statements is correct? 

a. The Seebeck coefficient decreased due to the existence of the secondary conduction 
band because of additional scattering. 

b. The Seebeck coefficient increased because the secondary band increased the 
differential conductivity above the Fermi level while the differential conductivity 
below the Fermi level remained the same, so that the degree of asymmetry of the 
differential conductivity around the Fermi level increased. 

c. The electrical conductivity decreased because the Seebeck coefficient increased by 
the influence of the secondary band and there is a trade-off between the Seebeck 
coefficient and the electrical conductivity. 

d. The electrical conductivity increased because the secondary band added more states 
within the Fermi window. 

e. a and c 

f. a and d 

g. b and c 

h. b and d  
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3. (Band convergence in Mg2SnxSi1-x solid solutions) Mg2SnxSi1-x solid solutions have recently 
attracted a lot of attention as a cheap, environmental-friendly, and efficient thermoelectric 
material in the mid-temperature range of 500  900 K. This alloy material has two 
conduction valleys in the X-point in the Brillouin zone, and multiple valence valleys 
overlapped at the -point as shown in the Figure (a) below. The band gap between the 
primary conduction band and the valence bands, and the band offset between the two 
conduction bands are a function of Sn content x. It is assumed that the x dependences of 
the band gap and conduction band offset are linear as shown in the figure (b) below.  

 

The band structure information for Mg2SnxSi1-x is included as a function of Sn content x as 
well as temperature in the material library in the thermoelectric material properties 
simulation tool (https://nanohub.org/tools/btesolver). To simulate the Mg2SnxSi1-x solid 
solutions, select “Mg2SnSi – Magnesium Tin Silicide” in the material selection menu in the 
first phase of the simulation tool. The band structure figure and parameters will be 
automatically updated. Two conduction bands and two valence bands are fully included in 
the band structure with appropriate parameters that are chosen to fit best the 
experimental data from the literature. 

In the second phase “Scattering properties”, make sure to select “Energy-Dependent 
Scattering Time” option in the Scattering Option. Real material parameters such as lattice 
constant and dielectric constants are already inserted in the input boxes. The major 
scattering mechanisms in this material are “Enabled” in each of the scattering boxes to 
include the realistic energy-dependent scattering time in the Boltzmann transport 
calculations. The acoustic phonon deformation potential scattering is a predominant 
scattering mechanism in this material. The ionized impurity scattering and the polar optical 
phonon scattering are also included for the transport calculations. Note that some of the 
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material and scattering parameters are a function of Sn content x. Keep all the values in the 
input boxes for the simulations. 

Calculate the thermoelectric properties of the n-type Mg2SnxSi1-x at 700 K with varying 
electron concentration from 1e19 to 1e21 cm-3. Repeat the calculations for various Sn 
contents x = 0.2, 0.4, 0.6, 0.8, and 1.0. Use a constant lattice thermal conductivity of 1.2 
W/mK for all the compositions.  

 

3-1. Which Sn content can achieve the largest ZT at 700 K, and what is the corresponding 
maximum ZT of this alloy at 700 K? Choose the closest values. 

a. x = 0.2, ZTmax = 0.9 

b. x = 0.4, ZTmax = 1.0 

c. x = 0.6, ZTmax = 1.1  

d. x = 0.8, ZTmax = 1.2 

e. x = 1.0, ZTmax = 0.9 

f. All the compositions have the same ZTmax = 1.2. 
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3-2. Check all the plots, e.g. Seebeck coefficient, electrical conductivity, and thermal 
conductivity plots, carefully for various Sn contents, and identify all of the major reasons ZT 
is maximized at a particular Sn content chosen in the previous question. 

a. Large Seebeck coefficients due to the larger separation of the two conduction bands  

b. Large Seebeck coefficients due to the convergence of the two conduction bands 

c. Large electrical conductivity due to the relatively lighter effective mass 

d. Large electrical conductivity due to the relatively heavier effective mass 

e. Smaller electronic thermal conductivity due to the smaller lattice thermal 
conductivity 

f. Smaller electronic thermal conductivity due to the smaller bipolar electronic thermal 
conductivity with a larger band gap 

g. a and c 

h. a and e 

i. a and f 

j. b and c 

k. b and e 

l. b and f  
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4.  (Doping optimization of p-type PbTe) PbTe has been known since 1960s as an excellent 
thermoelectric material in the mid-temperature range. Recently, a great deal of research 
efforts has been done world-wide on nanostructured PbTe-based materials to further 
improve the thermoelectric performance of PbTe. In order to enhance the figure of merit, 
however, doping optimization of the material is needed. It is helpful to understand the 
impact of doping on TE properties of base PbTe material.  

PbTe has a direct band gap at temperatures below 450 K with both the conduction band 
and the valence band at the L valley in the Brillouin zone. The second valence band is 
located at the  valley. The band gap increases linearly with temperature while the band 
offset between the two valence band edges slowly decreases with temperature. Above 450 
K or so, the L and  valley valence bands converge, and the  valley becomes the primary 
valence band as its band edge becomes higher than that of the L valley. All the effective 
masses and the nonparabolicities of the bands are temperature-dependent. These band 
parameters are given in the simulation tool. 

 

In this problem, we use the thermoelectric material properties simulation tool to optimize 
the p-type doping concentration of PbTe at two different temperatures: 600 K and 900 K. 
Use the energy-dependent scattering time for the realistic estimation of the thermoelectric 
properties. Acoustic and optical phonon deformation potential scatterings are dominant 
scattering mechanisms in PbTe. Polar optical phonon scattering is also strong as the ratio 
between the static and high-frequency dielectric constants of PbTe is very large.  
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4-1. Assume a constant lattice thermal conductivity of 1.2 W/mK for doping optimization of 
PbTe at 600 K. Find the optimal hole concentration (hopt) that maximizes the ZT value at 
600 K, and the corresponding maximum ZT value using the simulation tool. 

a. ZTmax = 1.21 at hopt = 9.1e18 cm-3 

b. ZTmax = 1.41 at hopt = 4.5e19 cm-3 

c. ZTmax = 1.61 at hopt = 7.6e19 cm-3 

d. ZTmax = 1.71 at hopt = 9.6e19 cm-3  

e. ZTmax = 1.91 at hopt = 1.4e20 cm-3 

  

4-2. Use a constant lattice thermal conductivity of 1.0 W/mK for doping optimization of PbTe at 
900 K. Note that the lattice thermal conductivity typically decreases with increasing 
temperature in this temperature range due to the increased Umklapp scattering. Find the 
optimal hole concentration (hopt) that maximizes the ZT value at 900 K, and the 
corresponding maximum ZT value using the simulation tool. 

a. ZTmax = 1.25 at hopt = 1.4e20 cm-3  

b. ZTmax = 1.49 at hopt = 2.2e20 cm-3  

c. ZTmax = 1.74 at hopt = 3.5e20 cm-3  

d. ZTmax = 1.91 at hopt = 1.3e20 cm-3  

e. ZTmax = 2.20 at hopt = 1.5e20 cm-3  
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5. (Analysis of the SPS-ed Na-doped PbTe:SrTe with ZT~2.2) Recently it has been reported that 
a spark-plasma-sintered Na-doped PbTe:SrTe (4% Sr) was measured to have a ZT ~ 2.2 at 915 
K. (See Biswas et al., Nature 489, 414, 2012.) In this homework problem, we attempt to 
analyze the experimental data from the paper using the simulation tool. Note that as the 
material contains 4 % Sr as well as 2 % Na, our simulations based on pure PbTe is a first order 
approximation. Since you will see that the match between theory and experiment is 
reasonably good, one can conclude that the “electronic” properties of the nanostructured 
material are quite close to pure PbTe while additional phonon scattering has improved ZT 
significantly. 

The figure below shows the experimental data from the paper. In the paper, only a room 
temperature hole concentrations of the samples were experimentally measured. The best 
sample with ZT ~2.2 (the red curve in the figure below) was measured to have a 9e19 cm-3 
hole concentration at room temperature. However, the hole concentration is expected to 
increase as temperature increases in this sample as the author anticipated by the fact that 
the Na atoms diffuses more into the matrix from the grain boundaries where the Na atoms 
are mostly electrically inactive to donate more holes to the matrix at higher temperatures.   
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5-1. Assuming that the Seebeck coefficient does not change significantly by nanostructuring in 
the material, find an estimated range of the hole concentration at 900 K for the best 
sample of the paper. (Hint: Find the range of hole concentration where the Seebeck 
coefficient is close to the experimental value of the sample at 900 K using the previous 
PbTe doping optimization simulations conducted in Prob. 4-2.) 

a. between 2.0e19 cm-3 and 3.0e19 cm-3 

b. between 9.0e19 cm-3 and 1.5e20 cm-3  

c. between 1.5e20 cm-3 and 3.0e20 cm-3 

d. between 3.0e19 cm-3 and 4.5e20 cm-3 

e. between 4.5e19 cm-3 and 6.0e20 cm-3 

 

5-2. What is the range of the electrical conductivity of PbTe at 900 K for the hole concentration 
range obtained in Prob. 5-1 based on the simulation? Why is there a discrepancy with the 
experimental data from the paper?  

a. Between 150 and 200 Ω-1 cm-1. The experimental data is slightly higher because the 
SrTe content reduces the mobility. 

b. Between 200 and 280 Ω-1 cm-1. The experimental data is slightly higher because the 
Na impurity scattering is weaker than the conventional impurity scattering. 

c. Between 280 and 400 Ω-1 cm-1. The experimental data is slightly lower because the 
nanostructures and grain boundaries reduce the electrical conductivity by additional 
carrier scattering.  

d. Between 400 and 550 Ω-1 cm-1. The experimental data is lower because the 
nanostructures and grain boundaries reduce the electrical conductivity with 
additional carrier scattering. 

e. Between 550 and 700 Ω-1 cm-1. The experimental data is much lower because the 
nanostructures significantly reduce the electrical conductivity with additional carrier 
scattering. 
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5-3. What is the estimated electronic thermal conductivity for the sample? How much does 
the bipolar thermal conductivity contribute to the total electronic thermal conductivity? 
Finally, find the lattice thermal conductivity at 900 K using the experimental total thermal 
conductivity value from the paper. 

a. e = 0.5 W/mK, bi =  0.2 W/ mK, and l = 0.5 W/mK 

b.  e = 0.6 W/mK, bi =  0.3 W/ mK, and l = 0.4 W/mK 

c. e = 0.7 W/mK, bi =  0.3 W/ mK, and l = 0.3 W/mK  

d. e = 0.8 W/mK, bi =  0.4 W/ mK, and l = 0.2 W/mK 

e. e = 0.9 W/mK, bi =  0.5 W/ mK, and l = 0.1 W/mK 
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6. (Carrier energy filtering in PbTe) When there is a cut-off energy level in the carrier transport, 
below which all the carriers are prevented from participating in the transport, a significant 
enhancement of the thermoelectric figure of merit in a bulk material is possible. This is often 
called, energy filtering. The enhancement comes from two effects: a large enhancement of 
Seebeck coefficient due to the enhanced asymmetry in the differential conductivity as shown 
in Prob. 1, and a large reduction of electronic thermal conductivity due to the reduced 
electrical conductivity by the electron energy filtering. The electrical conductivity is indeed 
reduced by the filtering effect because the total number of carriers participating in the 
conduction is reduced by the cut-off process. However, the enhancement of the Seebeck 
coefficient can be much larger than the electrical conductivity reduction if the cut-off energy 
level is appropriately selected for the carrier concentration in the material or an appropriate 
carrier concentration is selected for a fixed cut-off energy level. See [Bahk et al., Phys. Rev. B 
87, 075204 (2013)] for more information. 
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Set the cut-off energy level to be “0.1” eV above the primary valence band edge in p-type 
PbTe at 900 K. Find the optimal doping concentration that maximizes ZT for the PbTe under 
the filtering effect at 900 K, and the corresponding maximum ZT by the filtering effect with a 
0.1 eV cut-off? Use the lattice thermal conductivity value obtained from Prob. 5-3. 

a. ZTmax = 1.5 at hopt = 1.6e20 cm-3 

b. ZTmax = 2.0 at hopt = 2.1e20 cm-3 

c. ZTmax = 2.7 at hopt = 3.4e20 cm-3 

d. ZTmax = 3.8 at hopt = 5.3e20 cm-3 

e. ZTmax = 4.9 at hopt = 7.6e20 cm-3   

 

    


