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Thermoelectricity: From Atoms to
Systems

Week 5: Recent Advances in Thermoelectric Materials and Physics

Lecture 5.5: Ideal Thermoelectrics, Carnot vs. Curzon-Ahlborn
limits, Some open questions

By Ali Shakouri

Professor of Electrical and Computer Engineering
Birck Nanotechnology Center

Purdue University
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Carnot efficiency for heat engines (%efs-t\l

The production of motive power is then due in
steam-engines not to an actunal consumption of
caloric, but fo ifs fransportation from a warm
body to a cold body, that is, to its re-establishment

of equilibrium

v the bodies employed to realize the motive power
of heat there should not occur any change of tem-
perature which may not be due to a change of
rolume. Reciproecally, ...

Reflections on Motive Power of Fire, Sadi Carnot, 1824
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Curzon-Ahlborn Limit (C.\LL_J/G/E‘B'I

Hot Reservoir (T,)

F.L. Curzon and B.
Ahlborn, Am. J. Phys.
43, 22 (1975)

Heat In (finite)

K. Yazawa and A.

Shakouri, J. Appl.

Phys. 111, 024509
(2012)

Heat Out (finite)

Ambient Reservoir (T,)

Finite thermal resistances with hot and cold reservoirs
= Finite output power

= Curzon-Ahlborn efficiency at maximum output power:

Ta
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The Best Thermoelectric  SOUIEER

G. D. Mahan and J. O. Sofo, Proc. Nat. Acad. Sci. 93, 7436 (1996).

o= e’ j da( —a—ﬁ])E(E], °F
de ) :

— | 5—function
TaS =e f ds( —%)E{e]{e — ),

. dE

+ a
Tko = J: ds( —g)E(E](E - )’
»E

S(e) = N(e)v(e)?7(e),

Limitation: regime of validity of Boltzmann transport equation
Single energy level — Localized state (zero coupling with
reservoirs)
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Physics of reversible thermoelectrics (C{L_J/efs-t\l

One energy at which current reverses:

, : o . : |
E 0 E 0 € I:)z /2
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=1——=(Carnot limit)
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Constant occupation of states = Equilibrium

(despite temperature and electrochemical potential gradients)
T. E. Humphrey and H. Linke, Phys. Rev. Lett. 94, 096601 (2005)

e
3 L N1IU L A. Shakouri nanoHUB-U-Fall 2013



Physics of reversible thermoelectrics <%e€t\|
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T. E. Humphrey and H. Linke, Phys. Rev. Lett. 94, 096601 (2005)
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Thermodynamic analysis of single level

thermoelectrics
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Fig. 1: Sketch of the nanothermoelectric engine consisting
of a single quantum level embedded between two leads at
different temperatures and chemical potentials. We choose by
convention T; < Tr. Maximum power is observed in the regime

£ iy = [y

Abstract — We identify the operational conditions for maximum power of a nanothermoelectric
engine consisting of a single quantum level embedded between two leads at different temperatures
and chemical potentials. The corresponding thermodynamic efficiency agrees with the Curzon-
Ahlborn expression up to quadratic terms in the gradients, supporting the thesis of universality
beyond linear response.

M. Esposito, K. Lindenberg and C. Van den
Broeck; EPL, 85 (2009) 60010
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TE efficiency at maximum power (level

broadenln J) Nakpathomkun et al., Phys. Rev. B 82, 235428, 2010

Neglect phonon mediated heat flow.

The efficiency at maximum power is
independent of temperature and a careful
tuning of relevant energies is required to
achieve maximal performance.

Energy

1
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FIG. 1. (Color online) The basic setup considered here consists -EU
of a device described by its transmission function 7(E) (7o and 7y T 0415
are sketched as examples), with contact leads that act as the hot and
cold electron reservoirs. A bias voltage, V, is applied symmetrically /
with respect to the average chemical potential g, which can be D‘
tuned relative to the transmission function, using a gate voltage. 0

Quantum dots perform relatively poorly FIG. 4. (Color online) 7. p (red, crosses) and 7, (blue, open
under maximum power conditions. dots), both normalized by Carnot efficiency, and maximum power
Ideal one-dimensional conductors offer (green, full dots) of a quantum dot as a function of I'/kT for T¢
the highest efficiency at maximum =300 K and Ty=330 K. Maximum power peaks around I'/kT
power 36% of the Carnot efficiency. =2.25. Efficiency at maximum power m,..p approaches mnc,

=51% for small I' and is always smaller than 7,,,,.
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Efficiency at maximum output power

20%
Ta
Esposito et al. 0%

Physical Review
Letters 2011
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K. Yazawa and A. Shakouri, J. Appl. Phys. 111, 024509 (2012)
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If we could create 15t order phase transition (latent heat) in
“transported” electron gas, the efficiency of thermoelectric energy
conversion could be significantly increased.

.

C. Vining,
“Thermo-
electric
Process”,
MRS Spring
1997 (Vol.
478, p.3) :

or
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Fig. 4: Specific heat ratios, yp-for a PV system (Freon 12) and thermal conductivity ratios,
YE~1+ZT, for selected n-type semiconductor alloys as a function of temperature.
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Energy density propagation in TE materials (C\L/er\l

N,: The Green’s function of the total energy den3|tv propagation K(t,x) in a solid
materlal when there is delta-function excitation P(t)

Nz(a)’q)zaé((i:)q) - ai)_j)Mz P%t)

K(t,x)
q : :

M, :—%[a)—la)rq +i(1-¢) chz}

A:(a)—ia)z'q +iDQq2)(a)—ia)z'q +iDCCI2)+<§DQch4

» 1, total relaxation time of energy carriers (funct. of wavevector q)

B DQ heat diffusion constant «B. S. Shastry,
® D charge diffusion constant - Rep, Prog, Phys 72,
. 7T 016501, (2009)
@& & coupling factor between _ .V Ezzahri and A.

charge and energy density 1+7°T Shakouri;
Phys. Rev. B, 79,

® Z" high frequency limit of figure of merit 184303, (2009)




Thermal conductivity (Wm~1K"7)
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Phonon minibands in SiGe superlattices

Y. Ezzahri,

S. Dilhaire et al.
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Thermal conductivity (Wm~1K"7)
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SiGe/Si superlattice thermal conductivity (C\LL_J/E/S-t\I
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A. Shakouri, Annual Review of Materials Research (July 2011)
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Miniature Refrigerator
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Ali Shakouri and John E. Bowers, “Heterostructure integrated thermionic refrigeration®,
International Conference on Thermoelectrics, Dresden, Germany, August 1997
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Ali Shakouri and John E. Bowers, “Heterostructure integrated thermionic refrigeration®,
International Conference on Thermoelectrics, Dresden, Germany, August 1997
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Week 5: Lecture 5 Summary

e Carnot vs. Curzon-Ahlborn efficiencies

e Single level thermoelectrics (-revisit Prof.
Datta’s lectures)

— Sofo and Mahan vs. Humphrey and Linke

— Thermodynamic argument, optimum broadening
e Some open questions

— Phase transition in electron gas (latent heat)

— Coupled charge/energy transport

— Superlattice thermal conductivity

— Opto thermo electric devices
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