Thermoelectricity: From Atoms to Systems

Week 3: Thermoelectric Characterization Lecture 3.0: Introduction and Motivation

By Ali Shakouri Professor of Electrical and Computer Engineering Birck Nanotechnology Center Purdue University

World Marketed Energy Use1990-2035

Climate Change

NANOHUB

PURDUE

Photovoltaic Production

Wind Energy Generating Capacity

NANOHUB

2009: 24 GW 2011: 67GW

2009: 160 GW 2011: 238GW

2009: 75 B liters 2011: 86 B liters

Dan Kammen Scientific American Sept. 2006

US Energy Flow 1950

Population: 161M

Total energy consumption = 33.9 × 7011 88s.

World Energy Use in 2005 (15TW)

A. S. 15 August 2012

Adapted from Cullen and Allwood, Energy, 2010

Localized heating in microelectronics

- Leakage power exponential increase with temperature
 - Potential thermal runaway
- Lifetime exponential decrease with temperature

- (ΔT = 15C \rightarrow ¹/₄ lifetime)

http://masc.cse.ucsc.edu

Early Thermoelectricity

- Tens of thousands built, to power radios from any available heat source.
- In the 1950s-60s many in the US & USSR felt semiconductor thermoelectrics could replace mechanical engines, much as semiconductor electronics were replacing vacuum tube technology.
 - Hint: it didn't happen!

Abram F. loffe 1880-1960

Ioffe, A. F. (1957). <u>Semiconductor Thermoelements and</u> <u>Thermoelectric Cooling</u>. London, Infosearch Limited.

Cronin Vining, ZT Services

Radioisotope Thermoelectric Generators (Voyager, Galileo, Cassini, ...)

- 55 kg, 300 W_e , 'only' 7 % conversion efficiency
- But > 1,000,000,000,000 device hours without a single failure

Cronin Vining, ZT Services

SiGe unicouple

Optoelectronic temperature stabilization Quest

Wavelength Division Multiplexing

• Optoelectronic devices generate <u>kW/cm²</u> and they need <u>temperature</u> <u>stabilization</u>.

 Typical DFB Laser:

 Δλ/∆T= 0.1 nm/°C

TEs for Telecom Cooling

 Melcor, Marlow and many other TE manufacturers provide coolers specifically designed for Telecom laser-cooling applications

Cronin Vining, ZT Services

A. Shakouri nanoHUB-U Fall 2013

- Impact in energy systems
 - Waste heat recovery
 - Topping cycle applications
- Thermal management in electronics and optoelectronics
 - Microrefrigeration
- Characterization of electrical and thermoelectric transport in nanocomposites

