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review:  coupled charge and heat currents 
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electrical current: 

heat current (lattice): 

heat current (electronic): 
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lecture 6 topics 

1) Phase space 
 

2) The BTE 
 

3) Solving the s.s. BTE 
 

4) The TE coefficients 
 

5) BTE and Landauer 

The TE transport coefficients are traditionally derived by solving the 
Boltzmann Transport Equation (BTE).  This lecture is a short 
introduction to the BTE approach and a discussion of how it relates to 
the Landauer approach.  
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f(r, k, t) 
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“crystal momentum” 



p = h
r
k

“phase space” 
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goals 

1) Find an equation for f(r, p, t) out of equilibrium. 

2) Learn how to solve it near equilibrium. 

3) Relate the results to our Landauer approach 
results – in the diffusive limit. 

Lundstrom nanoHUB-U Fall 2013 

For much more about the BTE, see 
Lundstrom, Fundamentals of Carrier Transport, Cambridge, 2000. 
ECE 656: L12-17:  http://nanohub.org/resources/7281 
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semi-classical transport 

equations of motion for 
“semi-classical transport” 

EC varies slowly on the 
scale of the electron’s 
wavelength. 
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trajectories in phase space 
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Boltzmann Transport Equation (BTE) 
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BTE 
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in and out-scattering 

“in-scattering” 

“out-scattering” 

position, x, does 
not change 
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scattering and the RTA 

See Lundstrom:  pp. 139-141.   The RTA can be justified when the 
scattering is isotropic and/or elastic in which case the proper time to 
use is the “momentum relaxation time.” 
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Relaxation time approximation: 
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steady-state BTE 
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RTA 

“near-equilibrium” 

no B-fields for now 
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solving the near eq., s.s BTE 
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BTE solution 
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BTE solution 
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generalized force 

Lundstrom nanoHUB-U Fall 2013 

The two forces driving currents are: 
 
 1)  gradients in the QFL 
 2)  gradients in (inverse) temperature.   
 
In Lecture 1, we saw that (f1 – f2) produces currents and 
that differences in Fermi level and temperature cause 
differences in f. 
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what next? 
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moments 
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To evaluate these 
quantities, we need to 
work out sums in k-space. 

Recall Lecture 1 
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current 

tensor 
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an isotropic, isothermal conductor 
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solution 

current density in x-direction 

isothermal, spatial variations only in 
x-direction 
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conductivity 

To work out this expression, we need to evaluate the sum. 
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sums and integrals in k-space 

Nk is the density of states in k-space.  Note that it is independent of 
bandstructure. 

See: 
Lundstrom, Ch. 1, Fundamentals of Carrier Transport, Cambridge, 2000. 
ECE 656: L2 http://nanohub.org/resources/7281 

3D 
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conductivity 
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isotropic bands 
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conductivity 

parabolic bands 

constant scattering time 
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result: 

Recall…. 

✔ 
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conductivity from the BTE 

How does this result relate to the Landauer approach ? 

Let’s go back….(slide 25) 

change variables to energy 
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✔ 
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conductivity 
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“mfp for backscattering” 
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finally 

So the result from solving the BTE is equivalent to the result from the 
Landauer approach in the diffusive limit. 

Similarly, it is easy to show that the BTE gives the same answers for 
the Seebeck coefficient and electronic heat conductivity. 
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✔ 
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the BTE with a B-field… 
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steady-state, spatially uniform with RTA: 
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the coupled current equations (B = 0) 
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Transport tensors were diagonal for parabolic energy bands. 

(diffusive transport) 



 
31 

the coupled current equations (B ≠ 0) 
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Transport tensors now depend on the B-field and have off-
diagonal terms. 

(diffusive transport) 
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summary 
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Landauer approach: 

• clear physical insight 
• works in ballistic limit as well as quasi-ballistic and 

diffusive regimes 
• does not require a bandstructure 

BTE approach: 

• “easy” to add magnetic field 
• anisotropic materials (transport tensors) straight-forward 
• can resolve transport spatially 
• “off-equilibrium” easy to handle 
• ballistic transport can be handled, but not as easily 
• not as physically transparent 

Bottom line:  should know both approaches. 
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