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review:  coupled charge and heat currents 
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electrical current: 

heat current (lattice): 

heat current (electronic): 
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heat flux and thermal conductivity 

1) Electrons can carry heat, and we have seen how to evaluate 
the electronic thermal conductivity. 

 
2) In metals, electrons carry most of the heat. 
 
 

3) But in semiconductors and insulators, lattice vibrations 
(phonons) transport most of the heat. 
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Lecture 5 topics 
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1) Phonons 
 

2) Landauer approach to phonon transport 
 

3) Thermal conductivity vs. temperature 
 
1) Electron vs. phonon transport 
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electron dispersion 

Electrons in a solid behave as both particles 
(quasi-particles) and as waves. 
 
Electron waves are described by a 
“dispersion:” 
 
Because the crystal is periodic, the 
dispersion is periodic in k (Brillouin zone). 
 
Particles described by a “wavepacket.” 
 
The “group velocity” of a wavepacket is 
determined by the dispersion: 

E

−π a π a
k
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mass and spring 
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M
x t( )− x0 = Aeiω t
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phonon dispersion 

Lattice vibrations behave both as  particles 
(quasi-particles) and as waves. 
 
Lattice vibrations are described by a 
“dispersion:” 
 
Because the crystal is periodic, the dispersion 
is periodic in k (Brillouin zone). 
 
Particles described by a “wavepacket.” 
 
The “group velocity” of a wavepacket is 
determined by the dispersion: 

Debye 

Einstein 

ω

−π a π a

BW
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real dispersions 
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electrons in Si (along [100]) phonons in Si (along [100]) 
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general model for lattice thermal conduction 

0 V
I

I channel 
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(electrons) 
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near-equilibrium heat flux 

watts = (watts/K) x K 

thermal conductance 
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Recall the electrical conductance: 

“window function”: 

Wel E( )= −∂f0 ∂E( )
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window functions 
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heat conduction 

1) Fourier’s Law of heat conduction: 

3) Quantum of heat conduction: 

4) Window function for phonons: 

2) Thermal conductance: 
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electrical conduction 

I = G∆V1) Electrical current: 

2q2

h
3) Quantum of electrical  conduction: 

4) Window function for electrons: 

2) Electrical conductance: 

Wel E( )= −∂f0 ∂E( )
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window functions:  electrons vs. phonons 

Wel E( )= −∂f0 ∂E( )
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diffusive heat transport (3D) 

(Watts) 

(Watts/K) 

(diffusive phonon transport) 

(Watts) 

(Watts/m-K) 
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diffusive heat transport (3D) 

(Watts / m2) 

(Watts/m-K) 

(Amperes / m2) 

(1/Ohm-m) 
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diffusive heat transport (3D) 

(Watts / m2) 

(Watts/m-K) 

(Amperes / m2) 

(1/Ohm-m) 
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connection to traditional view 

(Watts/m-K) 

(1/Ohm-m) 
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effective mass model for electrons 

E

k

−π a π a

As long as the BW >> kBT, the 
effective mass model generally 
works ok. 

Typically, only states near the 
band edge matter, and these 
regions can be described by 
an effective mass 
approximation. 
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Debye model for acoustic phonons 

If acoustic phonons near q =0 
mostly contribute to heat 
transport, Debye model works 
work well. 

ω

−π a π a

BW

Linear dispersion model 

Debye 
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effective mass model for electrons 

0 0.1 0.2
0

0.1

0.2

0.3

0.4

Eel - EC, Eel - EF  (eV)

M
el

 (x
10

19
 m

-2
)

 

 

W
el

 (e
V-1

)  

20 

10 

0 

15 

5 

 

 
Mel, EMA  
Mel, full band 
Wel, 50 K 
Wel, 300 K 

Parabolic dispersion assumption for electrons works well at 
room temperature. 

electrons in Si 
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lattice thermal conductivity 
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scattering 

Electrons scatter from: 
 
    1) defects 
        -e.g. charged impurities, neutral 
          impurities, dislocations, etc. 
 
    2) phonons 
 
    3) surfaces and boundaries 
 
    4) other electrons 

Phonons scatter from: 
 
    1) defects 
        -e.g. impurities, dislocations, 
          isotopes, etc. 
 
    2) other phonons 
 
    3) surfaces and boundaries 
 
    4) electrons (“phonon drag”) 
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phonon-phonon scattering 

i) momentum conservation: 

ii) energy conservation: 

little effect on thermal conductivity! 
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Umklapp  (U) process (momentum not 
conserved).  Lowers κL. 
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N and U processes 

Normal  (N) process 
(momentum conserved) 
Little effect on κL. 

High q implies short 
wavelength.  
Unphysical because 
wavelength would 
be less than lattice 
spacing. 
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scattering summary 

1) point defects and impurities: “Raleigh scattering” 

2) boundaries and surfaces: 

3) Umklapp scattering: 
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temperature-dependent thermal conductivity 
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electron vs. phonon conductivities 

The expressions look similar: 

In practice, the mfps often have similar values.  The difference is <M>. 
 
For electrons, the location EF can vary <M> over many orders of magnitude. 
 
But even when EF = EC, <M> is much smaller for electrons than for phonons 
because for electrons, the BW >> kBTL while for phonons, BW ~ kBTL.  Most of the 
modes are occupied for phonons but only a few for electrons. 
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electron vs. phonon conductivities 
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Example 1:  Bi2Te3: 

Large mass, low sound velocity  small BW 
Phonon MFP engineering 



n-type Bi2Te3 vs. Si 
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Example 1:  Bi2Te3: 

Example 2:  Si: 



Phonon MFP engineering 
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Jiaqing He, Mercouri G. Kanatzidis, and Vinayak P. Dravid,  “High performance bulk 
thermoelectrics via a panoscopic approach,” Materials Today, 16, 166-176, 2013. 



summary 

1) Model for electrical conduction can readily be extended to 
phonons.  The mathematics are very similar.  Lattice heat 
conduction is quantized just as electronic conductivity is. 

 
2)  The different BW’s of the electron and phonon dispersions have 

important consequences.  For electrons, a simple dispersion 
(effective mass) is often adequate, but for phonons, the simple 
dispersion (Debye model) is not very good. 

 
3)   There is no Fermi level for phonons, so the lattice thermal 

conductivity cannot be varied across several orders of 
magnitude like the electrical conductivity, but MFPs can be 
engineered. 
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