- 1) The material thermoelectric figure of merit is roughly proportional to ... (μ is the carrier mobility, m^* is the effective mass of carriers, and κ is the thermal conductivity)
 - a. $\frac{\mu}{\kappa}$
 - b. $\frac{\mu(m^*)^{1.5}}{\kappa}$
 - c. $\frac{\mu}{\kappa (m^*)^{1.5}}$
 - d. $\frac{\kappa}{\mu(m^*)^{1.5}}$
 - e. $\frac{(\mu)^{1.5}m^*}{\kappa}$
- 2) What is the definition of the Lorenz number L? (κ_e is the electronic thermal conductivity, κ_l is the lattice thermal conductivity, σ is the electrical conductivity, and T is the absolute temperature.)
 - a. $L = \frac{\kappa_e + \kappa_l}{\sigma T}$
 - b. $L = \frac{\kappa_l}{\sigma T}$
 - c. $L = \frac{\kappa_e}{\sigma T}$
 - $d. \quad L = \frac{\sigma T}{\kappa_e}$
 - e. $L = \frac{\sigma T}{\kappa_l}$
- 3) Which material is a better thermoelectric material among the followings at 600 K?
 - a. Bi₂Te₃
 - b. $Si_{0.7}Ge_{0.3}$
 - c. Ag₂Te
 - d. In_{0.53}Ga_{0.47}As
 - e. PbTe

- 4) Which of the following bulk thermoelectric materials has the largest ZT (up to Oct. 2013)?
 - a. LAST-18
 - b. SALT-20
 - c. Spark-plasma-sintered Na-doped PbTe:SrTe
 - d. TAGS
 - e. SiGe