Quiz: Week 2 Bonus Lecture Thermoelectric Materials and Devices

Jesse Maassen & Mark Lundstrom, nanoHUB-U Fall 2013

Answer the **five questions** below by choosing the **one, best answer**.

- 1) Why use a full band description of electron/phonon states?
 - a) Extract meaningful and reliable material parameters.
 - b) Predict the properties of materials, where little or no experimental data is available.
 - c) Using a full band approach is easy and computationally efficient.

d) All of the above answers.

- e) None of the above answers.
- 2) The transport distribution $\Sigma(E)$, the central quantity in the Boltzmann approach, is simply proportional to two quantities in the Landauer approach?
 - a) Number of modes M(E) times the average velocity $\langle v(E) \rangle$.
 - b) Number of modes M(E) times the average velocity projected along the transport direction $\langle v_x(E) \rangle$.
 - c) Number of modes M(E) times the mean-free-path for backscattering $\lambda(E)$.
 - d) Density of states D(E) times the mean-free-path l(E).
 - e) Density of states D(E) times the average velocity projected along the transport direction $\langle v_x(E) \rangle$.

- 3) The "band counting" method to calculate the number of modes M(E) depends on what?
 - a) The degeneracy of the bands.
 - b) The sign of the velocity projected along the transport direction.
 - c) The bandwidth of a band (i.e. energy range spanned by a band).
 - d) The dimensionality of the system.

e) All of the above answers.

- 4) What are the units of the distribution of modes $M_{3D}(E)$ (e.g. for a bulk material)?
 - a) m¹.
 - b) m⁰.
 - c) m⁻¹.
 - d) m⁻².
 - e) m⁻³.
- 5) Typically, electrons are better described by simple dispersion models (e.g. parabolic approximation) compared to phonons (e.g. Debye model), why?
 - a) Electron bandwidths are much larger than $k_{\rm B}T$; phonon bandwidths are much smaller than $k_{\rm B}T$.
 - b) Electron bandwidths are much smaller than k_BT ; phonon bandwidths are much larger than k_BT .
 - c) Electronic velocities are much larger than phonon velocities.
 - d) Electronic mean-free-paths for backscattering do not vary much, while phonon mean-free-paths for backscattering can vary by orders of magnitude.
 - e) Electrons have a much larger number of modes compared to phonons.

End of quiz. This quiz contains 5 questions.