ANSWERS: Quiz: Week 2 Lecture 3 Thermoelectrics from Atoms to Systems Mark Lundstrom, nanoHUB-U Fall 2013

Answer the **five questions** below by choosing the **one**, **best answer**.

- 1) Which of the following expressions for the thermoelectric figure of merit, *Z*, is correct?
 - a) $Z = S^2 S / k_{TOT}$.
 - b) $Z = S^2 / (rk_{TOT})$.
 - c) $Z = Sps/(Tk_{TOT})$.
 - d) All of the above.
 - e) None of the above.
- 2) What is the thermoelectric "power factor"?
 - a) The quantity, SS.
 - b) The quantity, S^2S .
 - c) The quantity, $S^2 ST$.
 - d) The quantity, Sps.
 - e) The quantity, k_0/k_I .
- 3) What location of the Fermi level maximizes the power factor for a p-type material?
 - a) The Fermi level should be well above the conduction band edge.
 - b) The Fermi level should be near the conduction band edge.
 - c) The Fermi level should be near the middle of the bandgap.
 - d) The Fermi level should be near the valence band edge.
 - e) The Fermi level should be well below the valence band edge.
- 4) What is the primary difference between a good thermoelectric material like Bi₂Te₃ and a poor thermoelectric material like Si?
 - a) Bi₂Te₃ has a much higher Seebeck coefficient.
 - b) Bi₂Te₃ has a much higher electrical conductivity.
 - c) Bi₂Te₃ has a much higher Peltier coefficient.
 - d) Bi₂Te₃ has a much lower electronic thermal conductivity.
 - e) Bi₂Te₃ has a much lower lattice thermal conductivity.

(continued on next page)

Mark Lundstrom

Quiz: Week 2 Lecture 3 (continued)

- 5) How are the n-type and p-type legs of a thermoelectric cooler hooked up?
 - a) They are electrically in series and thermally in series.
 - b) They are electrically in series and thermally in parallel.
 - c) They are electrically in parallel and thermally in series.
 - d) They are electrically in parallel and thermally in parallel.
 - e) They are electrically in open and thermally in parallel.

End of quiz. This quiz contains 5 questions.