Thermoelectricity, Atoms to Systems L1.3 Quiz <u>Answers</u>

We have seen that the current can be written in terms of voltage and temperature differences in the form $I = G DV + G_S DT$

1.3a. Suppose we have a material with a conductance function G(E) that is constant with energy: $G(E) = G_0$. The conductance G is then equal to G_0 :

$$G = \int_{-\infty}^{+\infty} dE \left(-\frac{\partial f_0}{\partial E} \right) G(E) = G_0$$

since
$$\int_{-\infty}^{+\infty} dE \left(-\frac{\partial f_0}{\partial E} \right) = 1$$

What is the corresponding coefficient G_S?

(a) zero

(b) proportional to G_0 , but negative in sign

(c) proportional to G_0 , and positive in sign

(d) independent of G₀, negative in sign

(e) independent of G₀, positive in sign

1.3b. The magnitude of the Seebeck coefficient S is given by

(a)
$$|S| = \frac{G_S}{G}$$

(b) $S = G + G_S$

- (c) $S = G G_S$
- (d) $|S| = G * G_S$
- (e) S is unrelated to G and G_S