Fundamentals of Nanotransistors

Unit 2: MOS Electrostatics

Lecture 2.7: 2D MOS Electrostatics

Mark Lundstrom

lundstro@purdue.edu Electrical and Computer Engineering Birck Nanotechnology Center Purdue University, West Lafayette, Indiana USA

Lundstrom: Nanotransistors 2015

Bulk MOSFETs

electrostatic potential: ψ

Effect of 2D electrostatics on I_{DS} vs. V_{GS}

1) DIBL increases with decreasing *L* and increasing V_{DS} 2) SS may increase with decreasing *L* and increasing V_{DS} 3) "Punchthrough" is a severe 2D effect. 3

2D Poisson equation

$$\nabla \cdot \vec{D}(x,y) = \rho(x,y)$$

$$\vec{\mathcal{E}}(x,y) = -\vec{\nabla}\psi(x,y)$$

2D Poisson equation

1) 1D MOS Capacitor: $\frac{\partial^2 \psi}{\partial y^2} = -\frac{\rho}{\varepsilon_s} = \frac{qN_A}{\varepsilon_s} \quad (\text{below}V_T)$ 2) 2D MOSFET: $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial v^2} = \frac{q N_A}{\varepsilon_s} \quad (\text{below} V_T)$

"gradual channel approximation" $\frac{\partial^2 \psi}{\partial v^2} >> \frac{\partial^2 \psi}{\partial x^2}$ (long channel)

Understanding V_T reduction

1) Short channel MOSFET below threshold:

$$\frac{\partial^{2} \psi}{\partial y^{2}} = \frac{q N_{A}}{\varepsilon_{S}} - \frac{\partial^{2} \psi}{\partial x^{2}}$$
$$\frac{\partial^{2} \psi}{\partial y^{2}} = \frac{q N_{A}|_{eff}}{\varepsilon_{S}}$$
$$N_{A}|_{eff} < N_{A}$$
$$V_{T} = V_{FB} + \frac{\sqrt{2q N_{A} \varepsilon_{S}(2\psi_{B})}}{C_{ox}} + 2\psi_{B}$$
(Lecture 2.3)

Barrier lowering view

No barrier lowering \rightarrow no DIBL

Barrier lowering

Barrier lowering increases current

SS is still independent of $|V_{DS}|$.

Punchthrough

Punchthrough

A "well-tempered MOSFET"

(Dimitri Antoniadis, MIT)

The height of the barrier should be controlled by the gate voltage; the drain voltage should have only a small effect.

Controlling 2D electrostatics

(also known as "short channel effects")

Need to design a short channel device to minimize 2D effects.

Question: How do we control 2D electrostatics in short channel MOSFETs?

Answer: Screen out the 2D fields.

Screening by free carriers

Geometric screening length: bulk MOSFET

Geometric screening length: DG MOSFET

Off-state: $V_G = 0V$, $V_D = 1V$, $I_{off} = 0.1 \mu A/\mu m$ (by H. Pal, Purdue, 2012)

Lundstrom: Nanotransistors 2015

17

Non-planar MOSFETs

"Transistors go Vertical," IEEE Spectrum, Nov. 2007.

See also: "Integrated Nanoelectronics of the Future," Robert Chau, Brian Doyle, Suman Datta, Jack Kavalieros, and Kevin Zhang, *Nature Materials*, **6**, 2007

Computing Λ

$$\frac{\partial^{2} \psi}{\partial x^{2}} + \frac{\partial^{2} \psi}{\partial y^{2}} = -\frac{\rho(x, y)}{\varepsilon_{S}} = \frac{-qN_{A}(x, y)}{\varepsilon_{S}}$$
$$\Lambda_{NW} < \Lambda_{DGSOI} < \Lambda_{SOI} < \Lambda_{BULK}$$

 $L_{\rm min} \approx 3\Lambda$

D. J. Frank, Y. Taur, and H.-S. P.Wong, "Generalized scale length for twodimensional effects in MOSFETs," *IEEE Electron Device Lett.*, **19**, pp. 385–387,1998.

Qian Xie, Jun Xu, and Yuan Taur, "Review and Critique of Analytic Models of MOSFET Short-Channel Effects in Subthreshold," *IEEE Trans. Electron Dev.*, **59**, pp 1569-1579, 2012.

2D electrostatics

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \frac{-qN_A(x,y)}{\varepsilon_S}$$

- 1) Effective doping
- 2) Barrier lowering
- 3) Geometric screening length
- 4) Capacitor model (lecture notes)

"Well-tempered MOSFET"

"Well-tempered MOSFET"

$$E_X$$
 vs. x for $V_{GS} = 0.5V$

(Numerical simulations of an L = 10 nm double gate Si MOSFET from J.-H. Rhew and M.S. Lundstrom, *Solid-State Electron.*, **46**, 1899, 2002.)

Lundstrom: Nanotransistors 2015

Example

Summary

2D MOS electrostatics degrade device performance (increases DIBL and SS).

The goal of MOSFET design is to make 1D electrostatics hold at the VS – with small DIBL and a SS parameter, *m*, which is nearly one.

The way to achieve this is to engineer the device such that the gate voltage controls the height of the source to channel energy barrier.

Next Lecture: Let's re-visit the VS model.