Fundamentals of Nanotransistors L4.2 Quiz <u>ANSWERS</u> Mark Lundstrom

Purdue University

Lecture 4.2: Transmission

- 1) How is the mean-free-path, $\lfloor (E) = U(E) t(E)$ related to the mean-free-path for backscattering, I(E)?
 - a) L(E) = I(E) (They are different names for the same quantity.)
 - b) $\lfloor (E) < / (E)$. c) $\lfloor (E) > / (E)$.
 - d) L(E) is the mfp in a metal and /(E) is the mfp in a semiconductor.
 - e) $\lfloor (E)$ is the mfp assuming Fermi-Dirac statistics, and /(E) is the mfp assuming Maxwell-Boltzmann statistics.
- 2) In a region with a very strong accelerating electric field but that is many mfps long, what is the transmission? a) $\mathcal{T}(E) << 1$
 - b) $\mathcal{T}(E) \gg 1$
 - c) $\mathcal{T}(E) > 1$
 - d) $\mathcal{T}(E) = 0.0$
 - e) $\mathcal{T}(E) \gg 0.5$
- 3) In a structure that consists of a region of length, L_{low} , with no electric field followed by a region of length, L_{high} , with a very high accelerating electric field, approximately what is the overall transmission?

a)
$$\mathcal{T}(E) \gg \frac{f(E)}{f(E) + L_{low}}$$

b) $\mathcal{T}(E) \gg \frac{f(E)}{f(E) + L_{high}}$
c) $\mathcal{T}(E) \approx \left(\frac{f(E)}{f(E) + L_{low}}\right) + \left(\frac{f(E)}{f(E) + L_{high}}\right)$
d) $\mathcal{T}(E) \approx \left(\frac{f(E)}{f(E) + L_{low}L_{high}}/(L_{low} + L_{high})\right)$
e) $\mathcal{T}(E) \gg \frac{f(E)}{f(E) + (L_{low} + L_{high})}$