Fundamentals of Nanotransistors L3.6 Quiz <u>ANSWERS</u> Mark Lundstrom Purdue University

Lecture 3.6: Revisiting the VS Model

- 1) How does the traditional expression for the linear region current, $I_{DLIN} = (W/L) m_n |Q_n(V_{GS}, V_{DS})| V_{DS}$, change for a ballistic MOSFET?
 - a) Change $\left(W/L\right)$ to $\left(W\right)$.
 - b) Change (W/L) to $(W + /_0)/L$.
 - c) Change M_n to M_B .
 - d) Change M_n to $U_T/_0/2$.
 - e) Change V_{DS} to $k_B T/q$.
- 2) How does the traditional expression for the saturation current, $I_{DSAT} = W |Q_n(V_{GS}, V_{DS})| u_{sat}$, change for a ballistic MOSFET?
 - a) Change (W) to (W/L).
 - b) Change (W/L) to $(W + /_0)/L$.
 - c) Change U_{sat} to $M_B V_{DS}/L$.
 - d) Change U_{sat} to U_T .
 - e) Change U_{sat} to $m_{_B}(k_{_B}T/q)/L$.
- 3) Which of the following is true?
 - a) Present day, short channel silicon N-MOSFETs operate essentially at the ballistic limit for current.
 - b) Present day, short channel silicon N-MOSFETs operate at a very small fraction of the ballistic limit for current.
 - c) Present day, short, n-channel channel III-V HEMTs operate essentially at the ballistic limit for current.
 - d) Present day, short, n-channel channel III-V HEMTs operate at a small fraction of the ballistic limit for current.
 - e) Both present day, short channel silicon N-MOSFETs and n-channel III-V HEMTs operate essentially at the ballistic limit for current.