Fundamentals of Nanotransistors L3.4 Quiz

ANSWERS

Mark Lundstrom Purdue University

Lecture 3.4: The ballistic MOSFET

1) The quantity, $\sqrt{2k_BT/\rho m^*}$, plays an important role in our discussions. What is it?

- a) The rms thermal velocity for nondegenerate conditions.
- b) The rms thermal velocity for degenerate conditions.
- c) The unidirectional thermal velocity for nondegenerate conditions.
- d) The unidirectional thermal velocity for degenerate conditions.
- e) The ballistic injection velocity for degenerate conditions.
- 2) Which of the following best describes the transmission in the ballistic limit?
 - a) $\mathcal{T}(E) = /(E)/(/(E) + L)$
 - b) $\mathcal{T}(E) = /(E)/L$ c) $\mathcal{T}(E) \to 1$ d) $\mathcal{T}(E) \to 0$

 - e) $\mathcal{T}(E) = 0.5$
- 3) How are the states at the top of the barrier (the virtual source) occupied in a **ballistic** MOSFET under on-current conditions?
 - a) Equally by electrons injected from the source and from the drain.
 - b) Mostly by positive velocity electrons injected from the source.
 - c) Mostly by negative velocity by electrons injected from the source.
 - d) Both positive velocity and negative velocity states are occupied by electrons injected from the source.
 - e) Only negative velocity states are occupied by electrons injected from the drain.