Fundamentals of Nanotransistors L2.5 Quiz ANSWERS Mark Lundstrom

Purdue University

Lecture 2.5: Mobile Charge: Bulk MOS

- 1) Which of the following is true about the mobile electron charge in C/cm² in a p-type bulk semiconductor?
 - a) There is no mobile charge for $y_s < 2y_B$.
 - b) The mobile charge varies as e^{qV_S/k_BT} below and above threshold.
 - c) The mobile charge varies as $e^{qy_S/2k_BT}$ below and above threshold.
 - d) The mobile charge varies as $e^{qy_s/2k_BT}$ below threshold and as e^{qy_s/k_BT} above threshold.
 - e) The mobile charge varies as $e^{q {\cal Y}_S/k_B T}$ below threshold and as $e^{q {\cal Y}_S/2k_B T}$ above threshold.
- 2) Which of the following is true about the mobile electron charge in C/cm^2 in a p-type semiconductor?
 - a) There is no mobile charge for $V_G < V_T$.
 - b) The mobile charge varies as e^{qV_G/k_BT} below and above threshold.
 - c) The mobile charge varies as e^{qV_G/mk_BT} below and above threshold.
 - d) The mobile charge varies as $\,e^{qV_G/mk_BT}$ below threshold and as $ig(V_G$ $V_Tig)$ above threshold.
 - e) The mobile charge varies as $(V_G V_T)$ below threshold and as e^{qV_G/mk_BT} above threshold.
- 3) What important effect does the finite semiconductor capacitance have in strong inversion (as compared to the case of an infinite semiconductor capacitance)?
 - a) It increases the mobile charge in the inversion layer.
 - b) It causes the gate capacitance to be less than the oxide capacitance.
 - c) It causes the gate capacitance to be more than the oxide capacitance.
 - d) It increases the maximum width of the depletion layer, $W_{_T}$.
 - e) It decreases the maximum width of the depletion layer, $W_{
 m r}.$