Fundamentals of Nanotransistors L1.6 Quiz

ANSWERS

Mark Lundstrom
Purdue University

Lecture 1.6: Traditional IV Theory

- 1) Which of the following observations would indicate that velocity saturation is occurring in the MOSFET?
 - a) A drain to source saturation current that varies as $\,I_{\rm DS}\,\,\mu\,\sqrt{\!\left(V_{\rm GS}$ $V_{\rm T}\right)}\,$.
 - b) A drain to source saturation current that varies as $I_{\scriptscriptstyle DS}$ $\mu (V_{\scriptscriptstyle GS}$ $V_{\scriptscriptstyle T})$.
 - c) A drain to source saturation current that varies as $I_{DS} \ \mu \left(V_{GS} V_T\right)^{3/2}$.
 - d) A drain to source saturation current that varies as $I_{DS} \ \mu ig(V_{GS} V_Tig)^2$.
 - e) A drain to source saturation current that varies as $I_{\rm DS}$ $\mu (V_{\rm GS}$ $V_{\rm T})^3$.
- 2) Which of the following expressions describes an N-channel MOSFET in the linear region?
 - a) $I_{DS} = WC_{ox} \upsilon_{sat} (V_{GS} V_T)$
 - b) $I_{DS} = \frac{W}{L} C_{ox} U_{sat} (V_{GS} V_T).$
 - c) $I_{DS} = W m_n C_{ox} (V_{GS} V_T) V_{DS}$.
 - d) $I_{DS} = \frac{W}{L} \mu_n C_{ox} (V_{GS} V_T) V_{DS}$.
 - e) $I_{DS} = \frac{W}{2L} \mu_n C_{ox} \left(V_{GS} V_T \right)^2 V_{DS}$.
- 3) Which of the following expressions describes a <u>short channel MOSFET</u> in the **saturation region**?
 - a) $I_{DS} = WC_{ox} \upsilon_{sat} (V_{GS} V_T)$.
 - b) $I_{DS} = \frac{W}{L} C_{ox} U_{sat} (V_{GS} V_T).$
 - c) $I_{DS} = W m_n C_{ox} (V_{GS} V_T) V_{DS}$.
 - d) $I_{DS} = \frac{W}{2L} \mu_n C_{ox} \left(V_{GS} V_T \right)^2$
 - e) $I_{DS} = W \upsilon_{sat} C_{ox} \left(V_{GS} V_T \right)^2$.