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1) Consider the problem shown below, electron transport across a slab of arbitrart 

length, . Assume that the positive and negative fluxes both travel at the 
unidirectional thermal velocity,  cm/s.  Assume 2D carriers, so that the particle 

fluxes have units of . 
 

 
 
Answer the following questions. 
 
1a) Derive an expression for the carrier densities at ,  and at ,  

cm-2 in terms of the injected flux,  cm-2s-1. 
 
Solution: 

  

 

 

 

 
1b) Compute the ratio of the net flux , to the gradient of the particle 

density,  and provide a physical explanation for the result. 
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Unit 4 Homework SOLUTIONS (continued) 
 
Solution: 

    (*) 
 
Using: 

 

 

we find: 

  (**) 

(Note that we can readily show that is linear inside the slab.) 
Dividing (*) by (**), we find 

  

Using , we find 

 

 
Explanation: 
Define a quantity,  and note that the units are cm2/s – the units of a 
diffusion coefficient. With this definition, the net flux can be written as: 
 

, 
 
which we recognize as Fick’s Law of diffusion. Note that we have made no assumption 
about the length of the slab, L.  It doesn’t matter whether the slab is much longer than 
the mfp for backscattering or much shorter, Fick’s Law holds.  This is, in fact, true, but 
not widely understood. 

 
1c) Consider a slab with a mfp for backscattering of  and an arbitrary length, . 

What is the maximum magnitude of the gradient of the particle density,  
as the length is varied from very short to very long? 
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Unit 4 Homework SOLUTIONS (continued) 
 

Solution: 
From the answer to part 1b), we have 

 

Using , we find 

   (*) 

In the diffusive limit,  and , so from (*), we find 

 

In the ballistic limit,  and , so from (*), we find 

. 

We conclude that  
 

 

 
It is often thought that for thin slabs, the concentration gradient will be large, and Fick’s 
Law will break down, but this analysis shows that as the slab becomes much thinner 
than a mfp, the magnitude of the concentration gradient approaches an upper limit that 
is determined by the mfp.  This helps explain why Fick’s Law works from the ballistic 
to diffusive limit for this problem. 

 
 
2) Consider a Si N-MOSFET with a density of mobile electrons of .  Assume 

Maxwell-Boltzmann statistics and room temperature.  Assume that  and that 
VDS is large. What fraction of the charge at the virtual source (top of the energy barrier) 
is due to electrons with negative velocities? 

 
Solution: 

From Unit 4, Lecture 4, we found 

, 

so 
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Unit 4 Homework SOLUTIONS (continued) 

 

  (*) 

In the ballistic case, all of the electrons have positive velocities, so 
 

 
In the second case, some of the mobile charge is due to electrons with negative 
velocities: 

, 
where 

 
 
In a well-designed MOSFET, the mobile charge is the same in both cases, so 

  

 
Using (*), we find 

 

 

 

 
 
3) Consider the following numbers typical of an L = 30 nm, silicon ETSOI (Extremely Thin 

SOI) MOSFET at room temperature: 
 

 
 

at  
 

 
 

3a) Assume that VGS = VDS = 1.0 V and estimate the average velocity at the top of the 
barrier, , under on-current conditions. 
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Unit 4 Homework SOLUTIONS (continued) 

 
Solution: 

  
 
The device is 1 micrometer wide, so 

 

 

 C/cm2 

 cm/s 

 

 
3b) Determine how close to the ballistic limit this MOSFET operates under on-

current conditions.  (You may assume non-degenerate carrier statistics to keep 
the math simple.) 

 
Solution: 

 

 
 
The ballistic on-current ratio is: 

 

For non-degenerate conditions: 

  (See Unit 3 HW, problem 1) 
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Unit 4 Homework SOLUTIONS (continued) 
 

3c) Determine the transmission under on-current conditions, . 
 

Solution: 

 

Solve for : 

 

 

 
3d) Determine the length of the critical region under on-current conditions. 

Express your answer in terms of the channel length, i.e. as  . 
 

Solution: 
We can begin with: 

 

Solve for the critical length: 
 (*) 

 
We need to find the mean-free-path, , which can be found from the given mobility: 

  (assuming non-degenerate carrier statistics). 

 

Now we can determine the critical length from (*) 
 

 

 
 

 
As expected, the critical length for backscattering under high drain bias is only a small 
fraction of the channel length. 
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Unit 4 Homework SOLUTIONS (continued) 
 
4) Consider an L = 22 nm silicon MOSFET with  cm2/V-s.  What is the apparent 

mobility for this device? Assume room temperature,  and Maxwell-
Boltzmann statistics. 

 
Solution: 

 cm2/V-s 

 cm2/V-s 

 

 
The fact that the apparent mobility is less than the scattering-limited mobility 
indicates that this MOSFET operates in the quasi-ballistic regime. 

 
 
5) Consider an L = 22 nm III-V (InGaAs) HEMT with an Indium-rich channel with 

 cm2/V-s.  What is the apparent mobility for this device?  Assume room 
temperature,  and Maxwell-Boltzmann statistics. 

 
Solution: 

 

 m/s 

 

 cm2/V-s 

 cm2/V-s 
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The fact that the apparent mobility is close to the ballistic mobility indicates that this 
MOSFET would operate very close to the ballistic limit. 

 
 
Unit 4 Homework SOLUTIONS (continued) 
 
6) The number of channels in the Fermi window is an important parameter.  For T = 0 K, 

it is  and for T > 0 K, it is .  Assume a Si MOSFET under high gate bias 

with . Also assume room temperature, an effective mass of 
, a valley degeneracy of 2, and operation at a small drain to source 

voltage.  Answer the following questions. 
 
6a) Compare  at room temperature to its value at T= 0 K assuming that 

 in both cases.  You should evaluate  assuming Fermi-Dirac 
carrier statistics. 

 
Solution: 
First, we need to find the Fermi level at T = 0 K.   
 

  (low VDS, so we include both + and – velocities in the DOS) 

 

 
Putting in numbers: 

 /J-m2 = 9.91 x 1032 /J-cm2 

 

  V 

 Now use:   

( ) ( )
( )

* 31 2 19

2 34

2 2 2 0.19 9.11 10 6.26 10 1.6 10
1.055 10

V F C
D F

g m E E
M E

π π

− − −

−

− × × × × × × ×
= =

×

 

( ) 8
2 3.56 10D FM E = ×  m-1 
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Next, we compute  at room temperature.   

 (*) 

 
Unit 4 Homework SOLUTIONS (continued) 

We first need to compute , the normalized Fermi level at room temperature.  
Begin with the relation of the 2D carrier density to the Fermi level: 

 

 

 

Compute the effective density of states: 

    cm-2 

 
Solve for the Fermi level: 
  

 
Returning to (*) 

 

We have computed  for these parameters before, the result is 

 cm/s 

   (Be careful to use MKS units!) 

 
Note that an iPhone app is available to compute Fermi-Dirac integrals.  An online 
tool is also available at https://nanohub.org/resources/fdical. 
 

 
   m-1 
 

( )
2

2

0.89D

D F

M
M E

=  
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We conclude that the assumption of complete degeneracy (i.e.  for  and 
 for ) is not particularly accurate – even for large gate voltages where 

 is large.. 
Unit 4 Homework SOLUTIONS (continued) 
 

6b) Evaluate  at room temperature assuming non-degenerate carrier 
statistics. Compare the result to that obtained with Fermi-Dirac statistics in 
question 6a). 

 
Solution: 
For non-degenerate semiconductors, Fermi-Dirac integrals become exponentials.  
From 6a): 
 

 

 

Using the first equation, the second equation becomes 

 

Using the results of 6a),  

 

 

 

 
We conclude that while the use of nondegenerate carrier statistics (Maxwell-
Boltzmann) simplifies the mathematics, it is not particularly accurate under high gate 
voltage. 
 
6c) Consider a very wide MOSFET with .  How many channels are there 

in the Fermi window when  cm-2? 
 
Solution: 

  

 

M.S. 
Lundstrom  edX:  Spring 2016 
 

10 



 
For a MOSFET this wide and with such a high carrier density, we would not expect to 
clearly observe quantized observe quantized conductance, but the number of 
channels is getting small enough that it is becoming countable. 
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