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In the Unit 3 lectures, I largely used Maxwell-Boltzmann (nondegenerate) statistics for 
carriers, because it simplified the calculations but still illustrated the key points.  In 
practice, one would need to include Fermi-Dirac statistics, and that complicates things by 
bringing in Fermi-Dirac integrals, but the fully degenerate (T = 0 K) case is just as easy to 
solve as the nondegenerate case, and it is also illustrative of more general principles.  In 
this homework assignment, you will re-do many of the calculations done in the lectures, 
but this time assuming T = 0 K.  Hopefully this will deepen your understanding of the 
concepts discussed in Unit 3. 
 
 
1) Consider a modern, silicon, N-channel MOSFET with the following parameters: 
 

 nm 
  

  
  

  

 

  

 
 

Compute the ballistic mobility and compare its value to the scattering limited, bulk 
mobility, . You may assume non-degenerate (Maxwell-Boltzmann) 
statistics for electrons. (In the last problem in this HW assignment, we will re-visit this 
problem assuming fully degenerate carrier statistics.) 

 
Solution: 
According to Lecture 3.1, the ballistic mobility is given by 

 

Using the given effective mass and temperature, we find 
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Unit 3 HW Solutions (continued) 

 

 

 
 
We will learn in Unit 4 that when , the transistor operates in the diffusive 
(scattering dominated) limit, and when , the transistor operates in the 
ballistic (no scattering) limit.  This transistor, which is typical of modern N-channel Si 
MOSFETs operates in the quasi-ballistic regime that we will discuss in Unit 4. 
 

 
2) To compute the current in an N-channel MOSFET, we would begin with the Landauer 

expression, 

, 

Assume that contact one is grounded and that a positive voltage (not necessarily small) 
has been applied to contact 2. Assume 2D electrons, T = 0 K, that the transmission, , is 
independent of energy, and answer the following questions. 
 
2a) Determine the limits of integration,  and , for the integral in the Landauer 

expression. 

2b) Evaluate the integral to obtain an expression for the drain current of an N-channel 

MOSFET at T = 0 K. 
 

We will see later in this HW assignment that this equation can be used to compute the 
current of a ballistic MOSFET. 

 
Solution 2a): 
Because of the bias on contact 2 (the drain), the Fermi level is lowered 

  
so 

 
 
For  at T = 0 K: 
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Unit 3 HW Solutions (continued) 

 
For  at T = 0 K: 

 

 
 
The quantify,  is non-zero only in the energy range   where

 and .  We conclude that the limits of integration should be 
 

 

 

 
Solution  2b): 
Using the results of 2a), assuming a constant transmission, and that  and 

 in the energy range of interest, we find: 

 

In Lecture 3.2, we learned that 

 

 (In Lecture 3.2, the bottom the conduction band was taken as , i.e., we assumed 
that  in Lecture 3.2.) 
 
The current becomes 

 

 

Note that there are no channels below   (except for the valence band channels that 
we are ignoring), so when 
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Unit 3 HW Solutions (continued) 
 
and when 

 and  
There are no channels for electrons injected from contact 2, so 

 

Alternatively, the above equation is valid when . 
The complete drain current expression is 
 

 

 
 

3) In the Landauer approach, current is proportional to the number of channels in the 
Fermi window: 

 

At T = 0 K, this becomes  
 

 
Compute the number of channels for a MOSFET under high gate bias with an electron  
density of .  Assume a silicon MOSFET with , ,  

T = 0 K, and that  nm. Assume a small drain bias so that  . 
 

Solution: 

For parabolic energy bands, we have seen that: ,so  
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   (*) 

Unit 3 HW Solutions (continued) 
 
and we only need to find . We are given the carrier density, and we can find the 
Fermi level from the carrier density, 

  

 . 

Now use this result for the Fermi level in the expression for modes (*): 

 

Putting in numbers: 
 

 
 

 
This number is rather small, so it is probably better to counts modes.  There can’t be a 
fraction of a mode, so we truncate 35.7 to 35. 

 
 

4) In Lecture 3.3, we showed that for small drain biases, current is proportional to voltage, 
, and that at T = 0 K: 

 

Show that the solution to problem 2) simplifies to this expected result for small 
voltages. 

 
Solution: 
Begin with the solution to problem 2): 

 

   (*) 

 
Now let’s expand for small voltages. 
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Ignoring higher order terms in the Taylor series expansions, we find 
Unit 3 HW Solutions (continued) 

 

 

 

 

    (**) 

 
Now use (**) in (*) to find 

 

 

We recognize the term in curly brackets as , so (*) can be written as 
 

 

 
which is the expected result. 
 
 

5) In Lecture 3.3, we showed that for non-degenerate, Maxwell-Boltzmann, carrier 
statistics, 
 

where 

 
is the nondegenerate uni-directional thermal velocity. 
 
Use the results of problem 2) to determine the ballistic on-current for T = 0 K. 
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Unit 3 HW Solutions (continued) 
 
Solution: 
Begin with the current for large drain bias: 

 

Assume ballistic transport : 

 (*) 

Now we need to relate this to the sheet carrier density, : 

  (**) 

(As discussed in Lecture 3.3, we divide the density of states by 2 because half the 
states can be filled by contact 1 and half by contact 2, but under high bias, the Fermi 
level in so low in contact 2, so that no states are filled by contact 2.) 
 
From (*) and (**), we find: 

  (***) 

 
Now for parabolic energy bands, velocity and energy are related by 

  

 

At the Fermi energy, the velocity is 

  (****) 

where is the so-called Fermi velocity.  Using (****) in (***), we find 
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Unit 3 HW Solutions (continued) 

We recognize  as the average x-directed velocity for electrons at the Fermi  
level.  The factor 2/3 comes from averaging the x-directed velocity for all energies 
from  .  We conclude 
 

 

 
The first set of brackets, , denotes an average over angle at a given energy, which 

gives the factor, . The second set of brackets, , denotes an average over 
energy and gives the factor, 2/3. 
 
Comparing to Lecture 3.3, we see that the nondegenerate and fully degenerate 
velocities are 

 

  

 
 

6) The ballistic injection velocity is an important quantity for a MOSFET.  It is the velocity 
at the virtual source under high drain bias.  Compare the value of the ballistic injection 
velocity for a typical Si MOSFET computed assuming nondegenerate statistics to the 
value computed assuming fully degenerate (T = 0 K) statistics.  Assume the following 
parameters: 

 
 

 

  

  

 
Solution: 
For the nondegenerate case, we use the given effective mass and temperature to find 
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For the fully degenerate case, we make the T = 0 approximation even though we are at T 
= 300 K. (If the semiconductor is strongly degenerate, this is a reasonable 
approximation.) 

Unit 3 HW Solutions (continued) 
 
From the result of prob. 5): 

  (*) 

Next, we must determine the location of the Fermi level.  Only positive velocity states 
are occupied under on-current conditions, so only half of the density of states is used: 

 

Solve for  to find 

, 

which can be used in (*) to find 

. 

Putting in numbers, we find: 

 

 
 

 
In practice, the injection velocity would between these two values because at 

 the semiconductor is between the non-degenerate and fully degenerate 
limits.  As mentioned in Lecture 3.4, in this case 
 

. 

When the carrier density is high (which produces a high Fermi energy), then we should 
also worry about conduction band non-parabolicity and the possibility that upper 
subbands (with possibly larger effective masses) could be occupied. 
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7) In Lecture 3.4, we derived the following expression for the ballistic channel 
conductance assuming non-degenerate carrier statistics 

 (*) 

Derive the corresponding expression for the fully degenerate (T = 0 K) case.  
(Remember that ballistic conductance is defined for small drain bias.) 
  
 

Unit 3 HW Solutions (continued) 
 
Solution: 
From the results of problem 4), we have in the ballistic limit 

 

so 

 

 
We also know that 

 

Combining these two results, we find 

 

which can be re-written as 

 

 
we recognize the term in curly brackets as the average x-directed velocity as the Fermi 
energy 

 

 
so the final answer is 
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Unit 3 HW Solutions (continued) 
 
Comparing the fully degenerate case to the non-degenerate case, (*), we see that 

 

 

 
 

8) The ballistic model we developed in Lecture 3.4,  

 

 
assumed non-degenerate carrier statistics.  In this case, the drain current saturates  
when .  Answer the following questions about the T = 0 K drain saturation 
voltage. 
 
8a) Derive an expression for . 
 
8b) Compare nondegenerate and degenerate drain saturation voltages for a silicon 

MOSFET biased at a gate voltage so that . 
 
Solution 8a):  
From the solution to problem 2b), we found 
 

 

 
When 

 and  
there are no channels for electrons injected from contact 2, so 

. 
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Alternatively, the above equation is valid when . 
 
We conclude that 

  (*) 
 
The location of the source Fermi level is determined by the mobile charge density in the 
channel. For ,  only positive velocity states are occupied, so 

 
Unit 3 HW Solutions (continued) 
 

  

from which we find: 

, 

which can be used in (*) to find 

 

 

 
Solution 8b): 
 
Putting in the relevant numbers, we find: 

 V 

Assume that for the non-degenerate case, V. 

We conclude that the drain saturation voltage is higher when carrier degeneracy is 
included. 

 

 

 
 

9) Now let’s re-visit prob. 1) but this time assuming fully degenerate conditions.  Answer 
the following questions. 
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9a) Derive an expression for the ballistic mobility at T = 0 K. (Remember that mobility 
is defined for small drain bias.) 

 
9b) Numerically evaluate the ballistic mobility for the MOSFET of prob. 1) and 

compare your answer to the result obtained by assuming nondegenerate 
conditions. 

 
 
 

 
 
Unit 3 HW Solutions (continued) 

 
Solution 9a): 
In prob. 7), we found the ballistic conductance to be 

 

Write this as 

 

and equate the two expressions to find 

 

Solve for the ballistic mobility: 

 

which could be written as 
 

 

 
Solution 9b): 
Begin with 

 (*) 

 
Now solve for the location of the Fermi level in terms of the carrier density 
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insert in (*) to find 

 

 
 
 

Unit 3 HW Solutions (continued) 
 

Now insert L = 20 nm, , and  to find 
 

 

 
This should be compared to the value of 473 that was obtained in prob. 1) using 
nondegenerate carrier statistics.  In practice, MOSFETs in the on-state operate between 
the nondegenerate and fully degenerate limits and the ballistic mobility should be 
defined in terms of Fermi-Dirac integrals. 
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