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1.1 Introduction

A physical understanding of how semiconductor devices work can be conveyed without going too deeply into
semiconductor physics, but a basic understanding of some key concepts at the level of an introductory course
in solid state physics or semiconductor devices is necessary. This lecture and the next will summarize a few
essential concepts. Results will be stated, not derived. These two lectures will be a review for those who
have already had a basic course in semiconductors and should provide just enough background for others
who may be encountering semiconductor devices for the first time. The references steer the reader to more
extensive discussions of semiconductor physics.

1.2 From energy levels to energy bands

Silicon has an atomic number of 14; it has 14 electrons whose negative charges are balanced by the positive
charges of 14 protons in the nucleus. We learn in Freshman chemistry that these fourteen electrons occupy
various energy levels associated with molecular orbitals. The lowest energy level is the n = 1 s orbital, which
can accommodate two electrons (one with spin up and the other with spin down). The next energy level
is the n = 2 s orbital, then the three n = 2 p orbitals px,py, and pz. Each of the three p orbitals can
accommodate two electrons so the n = 2 p orbitals can accommodate six electrons. Next are the n = 3 s
and p orbitals.

The 14 electrons occupy orbitals with the lowest energy first, then the next lowest, etc. The orbital
configuration for Si is 1s22s22p63s23p2. The n = 1 and n = 2 levels are completely filled. The n = 3 s
and p orbitals can accommodate 8 electrons, but only 4 of the orbitals need to be filled to accommodate
all 14 electrons, so in the 3s and 3p orbitals, we have 8 “states” that can accommodate electrons, but only
4 are filled. All 14 electrons are accommodated in a set of molecular orbitals with discrete energies. We
are most interested in the highest occupied orbitals, which contain the “valence” electrons, because they are
responsible for chemical bonding. In addition to the highest occupied orbitals, we are also interested in the
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lowest unoccupied orbitals, because these are the energy levels whose electron populations we can modify to
produce electronic devices. The lower energy electrons, closer to the atom’s “core” will not be of interest to
us.

The semiconductor used for most semiconductor devices such as transistors is silicon, and most silicon
transistors are made with high quality, single crystal silicon in which each silicon atom covalently bonds with
four nearest neighbors in the so-called diamond lattice structure. The density of Si atoms is about about
NA = 5× 1022 cm−3, and the nearest neighbor spacing is 0.235 nm. Since there were eight valence electron
states with 4 of them occupied for each Si atom, we expect to find 8NA valence states in the crystal with 4NA
of them occupied. That is what happens, but the quantum mechanical interaction of the electrons shifts
the energies and broadens them. Half of the states decrease in energy and become the “bonding states”
responsible for the covalent bonds in the Si lattice, and the other half of the states (the anti-bonding states)
increase in energy.

The 4NA filled electron energy levels become 4NA occupied states in a range of energies called the valence
band (Fig. 1.1). The 4NA unoccupied states become a band of unoccupied states known as the conduction
band (Fig. 1.1). As shown in Fig. 1.1, the top of the valence band is separated from the bottom of the
conduction band by an “energy gap” (or band gap), which is about 1.12 eV for Si. At T = 0 K, all of the
4NA states in the valence band are occupied and all of the 4NA states in the conduction band are empty.

At a finite temperature, the Si lattice is vibrating and has an average thermal energy of 3kBT/2, where
kB is Boltzman’s constant. At room temperature, T = 300 K, kBT = 0.026 eV, which is about 40 times
smaller that the bandgap of Si. On average, there is not enough thermal energy available to break the
covalent bonds and promote electrons from the valence band to the conduction band, but there is a small
probability of thermally exciting an electron from the valence band to the conduction band. As shown in
Fig. 1.1, this means that there will be a small probability of empty states (called holes) in the valence and
a small probability of filled states near the bottom of the conduction band. The density of electrons in the
conduction band is equal to the density of holes in the valence band and is known at the intrinsic carrier
concentration, ni. For silicon at room temperature, ni ≈ 1010 cm−3 [1, 2].

Figure 1.1: Illustration of how the energy levels of the Si valence electrons become the valence and conduction
bands in a Si crystal.

A Si MOSFET (one of the most important semiconductor devices) consists of a metal gate electrode and
source and drain contacts, an SiO2 gate insulator, and the Si substrate. Figure 1.2 illustrates the differences
between the energy bands of these materials. In an insulator, the valence band is filled with electrons, but
the bandgap is very large, so there is virtually no probability of promoting an electron from the valence band
to the conduction band, so no holes exist in the valence band and no electrons in the conduction band. A
metal is different in that the electron states are filled up to the middle of a band. Metals conduct electricity
very well, and insulators have negligible conductivity. In a semiconductor, we can change the number of
holes in the valence band and electrons in the conduction band either by varying the temperature or by
introducing a small concentration of dopants in the Si lattice. The conductivity of a semiconductor can be
made to vary over many orders of magnitude – from almost metallic to nearly insulating, which is what
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makes them so useful.

Figure 1.2: Sketches of the energy bands in an insulator, semiconductor, and metal.

1.3 Density-of-states and Fermi function

We have seen that in Si (our prototypical semiconductor), the valence band contains 4NA states per unit
volume and the conduction band contains the same number. The states are distributed in energy from the
bottom of the valence band to the top, and from the bottom of the conduction band to the top. In an
energy range, dE, the number of states per unit volume is D(E)dE, where D(E) is the density-of-states,
the number of states per unit volume per unit energy. In general, the density-of-states can be a complicated
function of energy. We know that it must go to zero at the bottom of the band, where a forbidden gap begins
and at the top of the band where another forbidden gap begins. We also know the total number of states in
the conduction and valence bands of Si must satisfy

4NA =

∫ E2

E1

D(E) dE , (1.1)

where E1 is the energy at the bottom of the band and E2 the energy at the top of the band.
The density-of-states is, in general a complicated function of energy that can be computed numerically.

As indicated in Fig. 1.1, however, most of the valence band is filled, except for a few empty states near the
top of the valence band, and most of the conduction band is empty, except for a few occupied states near the
bottom of the conduction band. we are, therefore, most interested in the density-of-states near the top of
the valence band and near the bottom of the conduction band. Simple calculations give a density-of-states
near the band edges that is adequate for many semiconductor problems. For a simple three-dimensional
semiconductor, we find [1 – 3].

D3D
c =

m∗n
√

2m∗n(E − Ec)
π2~3

Θ(E − Ec) , (1.2)

where m∗n is a material-dependent property known as the effective mass of electrons in the conduction
band, and Θ(E − Ec) is the step function, which is zero for E < Ec and one for E > Ec. Similarly, the
density-of-states near the top of the valence band is given by

D3D
v =

m∗p

√
2m∗p(Ev − E)

π2~3
Θ(Ev − E) , (1.3)
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where m∗p is a material-dependent property known as the effective mass of holes in the valence band. Equa-
tions (1.2) and (1.3) give the densities-of-states in the energy ranges of interest. Different materials will have
different effective masses and, therefore, different densities-of-states [2, 3]. A three-dimensional volume of a
material, a two-dimensional sheet of the same material, and a one-dimensional wire of the same material,
will all have different densities-of-states. The density-of-states depends, therefore, on the material and on
the dimensionality of the material.

Knowing the density-of-states is not enough – we must also know the probability that a state at energy,
E, is occupied. Intuitively, we expect that the lowest energy states will have a high probability of being
occupied and the highest energy states will have a low probability of being occupied. We fill up the states
with two electrons per state according to the Pauli exclusion principle so that the energy is minimized.
At T = 0 K, the highest filled state is at an energy, EF , the Fermi energy. At finite temperatures, the
probability that a state of occupied is given by the well-known, Fermi function,

f0(E) =
1

e(E−EF )/kBT + 1
, (1.4)

where EF is the electrochemical potential. (The subscript, “0”, reminds us that we are assuming thermal
equilibrium conditions.) Strictly speaking, the electrochemical potential at T = 0 K is the Fermi energy,
but it is common in electrical engineering to call the electrochemical potential at finite temperature the
temperature-dependent Fermi energy, so for our purposes, we will denote the electrochemical potential by
the symbol, EF .

Figure 1.3 is a plot of the Fermi function. It shows that states far below EF have a high probably of
being occupied (f0 → 1 for E � EF ) and states far above EF have a small probability of being occupied,
(f0 → 0 for E � EF ). States at the Fermi energy have a probability of 0.5 of being occupied. The transition
from high probability to low probability occurs in an energy range of a few kBT around EF .

Figure 1.3: Plot of the Fermi function vs. energy.

1.4 Carrier density and Fermi level

There is a one to one relation between the Fermi level and the number of electrons (or electron density per
unit volume) in a material. This is expected because to accommodate an increasing number of electrons,
more and more energy levels must be filled up according to the Paul exclusion principle. The Fermi level
must increase. To compute the electron density for a given Fermi energy, we multiply the number of states
in an energy range, dE, which is D(E) dE, by the probability that the states at this energy are occupied,
f0(E), and integrate from the bottom of the band to the top. The result is

n0 =

∫ ∞
Ec

Dc
3D(E)f0(E) dE . (1.5)
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Note that instead of integrating to the top of the band, we have set the upper limit to infinity. We can
do this because under most conditions, the Fermi function insures that states far above the bottom of the
conduction band have essentially zero probability of being occupied.

Using eqns. (1.2) and (1.4), we express the integral in eqn. (1.5) as

n0 =

∫ ∞
Ec

m∗n
√

2m∗n(E − Ec)
π2~3

1

1 + e(E−EF )/kBT
dE

=
m∗n
√

2m∗n
π2~3

∫ ∞
Ec

√
(E − Ec)

1 + e(E−EF )/kBT
dE

. (1.6)

Making a change of variables,

η = (E − Ec)/kBT
ηF = (EF − Ec)/kBT

, (1.7)

we find

n0 =
m∗n
√

2m∗n
π2~3

(kBT )
3/2
∫ ∞
0

η1/2

1 + eη−ηF
dη

= NC
2√
π

∫ ∞
0

η1/2

1 + eη−ηF
dη

, (1.8)

where

NC ≡
1

4

(
2m∗nkBT

π~2

)3/2

(1.9)

is known as the effective density-of-states.
In general, the integral in eqn. (1.8) cannot be done analytically, but integrals of this type occur so

often in semiconductor work that they have been given a name – Fermi-Dirac integrals [4]. In this case, the
integral in eqn. (1.8) is a Fermi-Dirac integral of order one-half,

F1/2(ηF ) ≡ 2√
π

∫ ∞
0

η1/2

1 + eη−ηF
dη , (1.10)

so we can relate the equilibrium density of electrons in the conduction band to the location of the Fermi
level by

n0 = NCF1/2(ηF ) . (1.11)

Fermi-Dirac integrals

The Fermi-Dirac integral of order j is defined as

Fj(ηF ) ≡ 1

Γ(j + 1)

∫ ∞
0

ηj dη

1 + eη−ηF
, (1.12)

where the Γ-function is defined for integer arguments of zero or greater as

Γ(n) = (n− 1)! . (1.13)

We also have the following useful relations,

Γ(1/2) =
√
π

Γ(p+ 1) = pΓ(p)
. (1.14)
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For non-degenerate semiconductors, the Fermi level is several kBT below the band edge, so ηF = (EF −
Ec)/kBT � 0. Under these conditions, Fermi-Dirac integrals of any order reduce to exponentials:

Fj(ηF )→ eηF ηF � 0 . (1.15)

Another useful property involves taking the derivative of a Fermi-Dirac integral,

dFj(ηF )

dηF
= Fj−1(ηF ) . (1.16)

These few definitions and rules are all we need for most semiconductor problems. One warning – don’t confuse
the “script” Fermi-Dirac integral as defined in eqn. (1.12) with the “Roman” Fermi-Dirac integral, Fj(ηF ),
which does not include the Γ-function normalization. For a good introduction to Fermi-Dirac Integrals –
including approximations and scripts to compute them, see [4].

Equation (1.11) relates the density of electrons in the conduction band to the location of the Fermi level.
In a non-degenerate n-type semiconductor, EF � Ec, so the states in the conduction band lie far above the
Fermi level in energy. In this case, the Fermi function, eqn. (1.4) can be approximated by an exponential,

f0(E) =
1

e(E−EF )/kBT + 1
≈ e(EF−E)/kBT . (1.17)

In this case, the states in the conduction band are nearly empty and the Pauli exclusion principle plays
no role; Fermi-Dirac statistics as described by the Fermi function can be replaced by Maxwell-Boltzmann
statistics. For non degenerate conditions, ηF � 0, and the Fermi-Dirac integral reduces to an exponential,
so we find from eqns. (1.11) and (1.15)

n0 = NCe
(EF−Ec)/kBT , (1.18)

which describes a non-degenerate semiconductor for which Maxwell-Boltzmann carrier statistics can be used
instead of Fermi-Dirac statistics. Similar arguments allow us to relate the density of empty states (holes)
near the top of the valence band to the Fermi level under non-degenerate conditions as

p0 = NV e
(Ev−EF )/kBT . (1.19)

The product of the equilibrium electron and hole densities under non-degenerate conditions can be found
by multiplying eqn. (1.18) by eqn. (1.19) to find

n0p0 = n2i , (1.20)

where n2i is a material and temperature dependent parameter that is independent of the specific location of
the Fermi level (for a non-degenerate semiconductor). From eqns. (1.18) and (1.19), we find

n0p0 = n2i = NCNV e
(Ev−Ec)/kBT = NCNV e

−EG/kBT .

or

ni =
√
NCNV e

−EG/2kBT . (1.21)

According to eqn (1.21), semiconductors with a large bandgap have a small density of intrinsic electron-
hole pairs. Note also that ni increases exponentially with temperature. For Si at room temperature, ni ≈ 1010

cm−3 [2].

1.5 Doping and carrier densities

What makes semiconductors useful is the fact that in a semiconductor it is readily possible to change the
densities of holes in the valence band and electrons in the conduction band. Stated another way, one can place
the Fermi level from near the top of the valence band to near the bottom of the conduction band or anywhere
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in between. One way to do this is by doping the semiconductor. (Another way is by using a gate to change
the electrostatic potential within the semiconductor – so-called gating.) Figure 1.4 illustrates how to dope
a semiconductor by substituting a small concentration of dopant atoms for Si atoms. The two-dimensional
cartoon is intended to illustrate the three-dimensional bonding in which each Si atom forms chemical bonds
with four nearest neighbors. If a Si atom (in column IV of the periodic table with four valence electrons) is
replaced by an element such as phosphorus or arsenic from column V with five valence electrons, then the
dopant forms covalent bonds with the four silicon neighbors, but the fifth valence electron is left over and
is weakly bound. The small amount of thermal energy available at room temperature can break this weak
bond and promote the electron to the Si conduction band leaving behind a positively charged dopant atom
because it has lost one electron.

Figure 1.4 also shows what happens when a dopant from column III of the periodic table (e.g. boron) is
substituted for a Si atom. In this case, the dopant has three valence electrons, so it can form covalent bonds
with three of the four neighbors. It takes only a little thermal energy to move an electron from a nearby
Si:Si bond and place it on the dopant site and fill the missing covalent bond. The dopant is now negatively
charged because it has an extra electron, but we have one missing Si:Si bond, so we have created a hole in
the valence band. By introducing small quantities of column V or column III impurities in the Si lattice, we
can control the quantity of electrons in the conduction band and holes in the valence band.

Figure 1.4: Illustration of semiconductor doping showing a Si lattice with each Si atom surrounded by four
nearest neighbors and a column V, n-type dopant and and a column III, p-type dopant. The energy band
diagram on the right shows that dopants introduce states in the forbidden gap of Si. Ec −ED is the energy
it takes to ionize a donor and place a free electron in the conduction band. EA − Ev is the energy it takes
to place an electron on the acceptor, which ionizes it and places a mobile hole in the valence band.

The concentration of electrons and holes in a semiconductor is determined by the density of dopants.
Assume that we have a concentration of column V donors that is equal to ND cm−3 and a concentration
of column III acceptors that is equal to NA cm−3. Also assume that the thermal energy is sufficient to
ionize these dopants, so that the concentration of ionized dopants is N+

D = ND and N−A = NA. For an
intrinsic semiconductor, the concentration of electrons in the conduction band and holes in the valence band
is n0,= p0 = ni. These concentrations can be changed by doping the semiconductor.

The net charge in the semiconductor is

ρ = q (p0 − n0 +ND −NA) C/cm3 . (1.22)

Because the electrons and hole are mobile, (the dopant atoms are fixed in the lattice and cannot move), they
will move about in order to cancel the net charge and make the semiconductor neutral,

ρ = q (p0 − n0 +ND −NA) = 0 . (1.23)

Equation (1.23) for the charge density in C/cm2 is one equation for the two unknowns, n0 and p0, but eqn.
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(1.20) provides the second equation. The result is that eqn. (1.23) can be expressed as an equation for n0,

n2i
n0
− n0 +ND −NA = 0 ; (1.24)

a similar equation can be written for p0. By solving the resulting quadratic equation for n0 or p0 and then
using eqn. (1.20) for the other concentration, we can determine both n0 and p0. If the location of the Fermi
energy is needed, it can be obtained from eqn. (1.18) or (1.19).

Consider an extrinsic semiconductor at a temperature high enough to ionize the dopants and for which
ND −NA � ni. In this case, we find

n0 ≈ ND −NA
p0 = n2i /n0

. (1.25)

In the case of an extrinsic p-type semiconductor (NA −ND � ni), we find analogous expressions.

1.6 Energy band diagrams

An energy band diagram is a plot of the top of the valance band and the bottom of the conduction band vs.
position. Energy band diagrams play an important role in understanding the operation of semiconductor
devices [1,5]. When drawing energy band diagrams, only the bottom of the conduction band and the top
of the valence band are plotted, because we understand that the filled and empty states of interest are very
close to these band edges. Consider a uniformly doped, p-type semiconductor. In equilibrium the Fermi
level is constant, and the separation between the Fermi level and the valence band edge is also constant, as
given by eqn. (1.19). The energy band diagram for this uniform semiconductor in equilibrium is a set of
horizontal lines, one for Ec, one for Ev, and another for EF . The lowest possible energy of an electron in the
conduction band is Ec, the potential energy of the electron. If an electron has an energy above the bottom
of the conduction band, then it has a kinetic energy of E − Ec.

Now let us assume that there is a position-dependent electrostatic potential, ψ(x), within the semiconduc-
tor. (There are different ways to produce a position-dependent electrostatic potential, such as non-uniform
doping or by the application of a gate voltage.) A positive electrostatic potential lowers the energy of an
electron according to

Ec(x) = Ec0 − qψ(x) , (1.26)

where Ec0 is the energy of the conduction band edge in the absence of an electrostatic potential. Accordingly,
we expect the bands to bend in the presence of an electrostatic potential. A positive electrostatic potential
bends both the conduction and valence bands down. If the semiconductor is still in equilibrium, then the
Fermi level remains constant – even in the presence of a non-uniform electrostatic potential. An example is
shown in Fig. 1.5 (left). From the energy band diagram, we determine the electrostatic potential by flipping
either the conduction or valence band upside down as shown in Fig. 1.5 (right). It is also easy to show that
the slope of Ec(x) is proportional to the electric field.

Energy band diagrams are extremely useful in understanding the operation of semiconductor devices.
Semiconductor device researchers and engineers make extensive use of energy band diagrams.

1.7 Bandstructure

The semiconductor’s bandstructure relates the electron energy to its momentum. Recall that for a classical
particle,

E(p) =
p2

2m
, (1.27)

where p is the momentum of the particle, and m is its mass. For electrons in a crystal, energy is related to
crystal momentum by the effective mass. A simple example is shown in Fig. 1.6 on the left. Electrons in
the conduction band have a minimum energy of Ec, and the energy increases with momentum according to

E(p) = Ec +
p2

2m∗n
= Ec +

~2k2

2m∗n
. (1.28)
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Figure 1.5: Semiconductor energy band diagram, a plot of the band edges vs. position. The fact that
the Fermi level is flat shows that the semiconductor is in equilibrium. Left: An energy band diagram
showing “band banding.” which indicates that a non-uniform electrostatic potential, ψ(x), is present in the
semiconductor. Right: The electrostatic potential, ψ(x), as determined by flipping the conduction or valence
band upside down. The electric field vs. position is proportional to the slope of Ec or Ev.

Electrons in the valence band are described by

E(p) = Ev −
p2

2m∗p
= Ev −

~2k2

2m∗p
. (1.29)

We say that these electrons have a negative effective mass, which is equivalent to holes with a positive
effective mass. In these equations, p = ~k is the crystal momentum, which will be discussed next.

Figure 1.6: Plot of electron energy vs. crystal momentum. On the left is shown a simple, parabolic E(k). On
the right is shown an actual band structure for silicon. While the band structure is complex, the parabolic
band assumption describes electrons near the bottom of the conduction band and near the top of the valence
band, which are the two regions of interest.(The full bandstructure was computed by Dr. Jesse Maassen,
Purdue University using the program, VASP.

In Fig. 1.6, we labeled the momentum by p = ~k, where k is the electron’s wavevector. The electron is
a quantum mechanical wave described by

ψn(~r) = un~k(~r)ei
~k·~r , (1.30)

where n is the quantum number, and the first term on the right arises from the crystal potential and is
periodic, u(~r) = u(~r + ~a), where ~a is the lattice vector. The quantity, ~~k has the units of momentum.
It is not the actual momentum of the electron, but it satisfies conservation laws that look like momentum
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conservation. This quantity is known as the crystal momentum. A plot of energy vs. momentum for electrons
in a crystal is really a plot of energy vs. ~k or crystal momentum ~~k. The E(~k) characteristic is known as
the electronic band structure, or dispersion.

The band structure of a semiconductor is considerably more complicated than the simple parabolic band
structure show in Fig. 1.6 on the left. The full bandstructure is show on the right in Fig. 1.6. Because
the crystal is periodic in real space, the bandstructure is periodic in k-space. The volume of k-space that is
repeated is known as the Brillouin zone. The figure on the right in Fig. 1.6 is a plot of E(~k) along some
high symmetry lines in the Brillouin zone, and E = 0 is the location of the Fermi level for intrinsic Si. The
top of the valence band is the first band below E = 0, which is seen to occur at the Γ point in the Brillouin
zone of Si (we also see that there are two degenerate valence bands at the Γ point, the light and heavy hole
bands. The bottom of the conduction band occurs along the X directions, near the edges of the Brillouin
zone. There are eight of these locations in the Si Brillouin zone, and electrons have an equal probability to
be in any of the eight locations. We say that the valley degeneracy is eight, gV = 8, for the conduction band
of Si.

Bandstructures like the one shown on the right of Fig. 1.6 are computed by solving the Schrödinger wave
equation with the crystal potential of the material while applying periodic boundary conditions. Although
the band structure is complex, the electrons and holes of interest reside in states near the bottom of the
conduction band or top of the valence band. The parabolic assumption shown on the left go Fig. 1.6 is often
adequate for electrons near these band minima or maxima.

Finally, we should mention how the energy band diagram, a plot of the band edges vs. position, and the
band structure, a plot of electron energy vs. crystal momentum, are related. It is usually a good assumption
that the potential vs. position changes slowly on the scale of the lattice potential. In this typical case, at
any location in the device, E(~k) is the same as in the bulk, except that the conduction and valence band
edges have been moved up or down in energy according to the value of the electrostatic potential at that
location.

1.8 Quantum Confinement

Quantum mechanics tells us that an electron behaves both as a particle and as a wave and that the wave as-
pects become important where the potential energy changes spatially on the scale of the electron’s wavelength
(the so-called de Broglie wavelength, λB). We can estimate the average electron wavelength from

p = ~k = ~
2π

λB
, (1.31)

where p is the crystal momentum, k the electron’s wave vector, and λB the electron’s wavelength. The
energy of the electron is E = p2/2m∗, and the thermal equilibrium average electron energy is 3kBT/2. Using
these relations, we obtain a rough estimate of the thermal average de Broglie wavelength as

〈λB〉 ≈
h√

3m∗kBT
≈ 6 nm , (1.32)

where we have assumed for a rough estimate that m∗ = m0. Electrostatic potential wells to confine electrons
to dimensions less than 10 nm are readily produced with a gate voltage, and semiconductor layers less than
10 nm thick are also readily achieved. The behavior of electrons confined in these quantum wells is different
from the behavior of electrons in the bulk, and it is important to understand the differences.

Figure 1.7 sketches two quantum wells; the one on the left is a rectangular quantum well with infinitely
high barriers on the sides, and the one on the right is a triangular quantum well. The direction of confinement
is the z-direction, but we assume that electrons are free to move in the x-y plane. Just as the Coulomb
potential of the nucleus of a hydrogen atom confines the electron to the vicinity of the nucleus, which leads
to the occurrence discrete energy levels of the hydrogen atom, we find that the energies of electrons in these
quantum wells consists of discrete subbands associated with confinement in the z-direction.

The time independent Schrödinger equation for electrons is[
− ~2

2m∗
∇2 − Ec(x, y, z)

]
ψ(x, y, z) = Eψ(x, y, z) . (1.33)
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Figure 1.7: Illustration of simple quantum wells. The direction of confinement is the z-direction and electrons
are free to move in the x-y plane. Left: Rectangular quantum well with infinitely high barriers. Right
Triangular quantum well with infinitely high barriers.

If Ec is a constant, then the solutions are plane waves,

ψ(x, y, z) =
1√
Ω
ei
~k·~r , (1.34)

where Ω is an arbitrary normalization volume chosen so the the integral of ψψ∗ over the volume is one. The
wavector, ~k, is obtained from

~2k2

2m∗
= (E − Ec) . (1.35)

The solution to the wave equation for a quantum well is the product of a plane wave in the x-y plane
times a function in the z-direction that depends on the shape of the quantum well in the z-direction,

ψ(x, y, z) =
1√
A
ei(

~k||·~ρ) × φ(z) , (1.36)

where A is an area in x-y plane used to normalize the wavefunction in the x−y plane. To find φ(z), we solve[
− ~2

2m∗
d2

dz2
− Ec(z)

]
φ(z) = Eφ(z) . (1.37)

Consider the rectangular quantum well on the left of Fig. 1.7 and take Ec = 0. The solutions to eqn.
(1.37) are sin(kzz) and cos kzz, where

~2k2z
2m∗

= ε = E −
~2k2||
2m∗

. (1.38)

The boundary conditions are φ(0) = φ(t) = 0 because the assumed infinitely high barriers force the wave
function to zero at the boundaries. Only sin(kzz) satisfies the boundary condition at z = 0, and to satisfy
the boundary condition at z = t, kz must take on discrete values of

kzt = nπ , (1.39)

where n = 1, 2, .... The result is that the energy in eqn. (1.38) becomes quantized; only the energies

εn =
~2n2π2

2m∗t2
, (1.40)
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are allowed. The total energy is

E =
~2
(
k2|| + k2n

)
2m∗

= εn +
~2k2||
2m∗

. (1.41)

Quantum confinement produces a set of subbands in the conduction band (and a corresponding set in the
valence band). For n = 1, the lowest energy is ε1, but there is an additional kinetic energy of ~2k2||/2m

∗

associated with the electron’s velocity in the x-y plane. Quantum confinement effectively raises the bottom
of the conduction band. The number of subbands that are occupied depends on the location of the Fermi
level. The subband energies are determined by the shape of the potential well and by the height of the
barriers. For the triangular quantum well shown on the right of Fig. 1.7, we expect subbands, but the values
of εn are different and the wavefunctions are Airy functions rather than sine functions. In general, however,
light effective masses and thin quantum wells give high subband energies, as illustrated by Eq. (1.40) for
the rectangular quantum well with infinite barriers.

In addition to changing the energies of electrons in the conduction and valence bands, quantum confine-
ment also changes the spatial distribution of electrons. For the rectangular quantum well, n(z) ∝ sin2(knz).
The contributions from all of the occupied subbands should be added to get the total electron density. The
electrons in a quantum well are free to move in the x-y plane, but can move very little in the z-direction.
They are quasi-two-dimensional electrons. The two-dimensional nature of the electrons changes the density
of states, Instead of eqn. (1.2) for 3D (unconfined) electrons, we have for each subband

D2D
c = gV

m∗n
π~2

Θ(E − εn) . (1.42)

Instead of eqn. (1.11) for the carrier density, we have

nnS = N2DF0(ηnF ) m−2 , (1.43)

for the sheet carrier density, where

N2D ≡ gV
m∗kBT

π~2
, (1.44)

is the effective density-of-states in 2D, and

ηnF = (EF − εn) /kBT , (1.45)

F0(ηF ) ≡ 1

Γ(1)

∫ ∞
0

η0 dη

1 + eη−ηF
= ln (1 + eηF ) . (1.46)

To get the total electron density, we add the contributions of all of the occupied subbands.
Some interesting effects occur when electrons in the conduction band of Si are confined in a quantum

well. Figure 1.8 shows the constant energy surfaces for electrons in the conduction band of Si. The lowest
energies occur at six different locations in the Brillouin zone along the three coordinate axes (the valley
degeneracy is gV = 6). The constant energy surfaces are ellipsoids of revolution described by

E =
~2k2x
2m∗xx

+
~2k2y
2m∗yy

+
~2k2z
2m∗zz

. (1.47)

There are two different effective masses, a heavy longitudinal effective mass, m∗l and a light, transverse
effective mass, m∗t . For Si, m∗l = 0.90m0 and m∗t = 0.19m0. For example, for the ellipsoids oriented along
the x-axis, m∗xx = m∗l ∗ and m∗yy = m∗zz = m∗t .

According to eqn. (1.40), the subband energies are determined by the effective mass, but which effective
mass should we use? The answer is to use the effective mass in the direction of confinement, the z-direction
in this case. From Fig. 1.8, we see that two of the six ellipsoids have the heavy, longitudinal effect mass in
the z-direction and four of the six have the light, transverse effective mass in the z-direction. The result is
two different series of subbands – an unprimed ladder of subbands with the energies determined by m∗l and
a degenerate of gV = 2, and a primed ladder of subbands with the energies determined by m∗t and a valley
degeneracy of 4. The lowest subband is the n = 1 unprimed subband. In the x-y plane, electrons in these
two degenerate subbands respond with the light, transverse effective mass.
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Figure 1.8: Left: A sketch of the constant energy surfaces for electrons in silicon. Right: the corresponding
unprimed and primed ”ladders” of subbands.

1.9 Summary

Our goal in this lecture has been to remind you of a few basic concepts in elementary semiconductor physics.
The key points are:

1. The discrete energy levels for isolated atoms become bands of energies in a solid. Electrons in the
valence and conduction bands of a semiconductor are “delocalized” and free to move within the crystal.

2. The states in a band are described by a density-of-states; the number of states per unity volume in a
small energy range is D(E) dE.

3. In general, the density-of-states is a complicated function of energy that must be determined numeri-
cally, but the regions of interest are energies near the top of the valence band and near the bottom of
the conduction band. For these energies, simple expressions for D(E) can be used.

4. In equilibrium, the probability that a state is occupied is given by the Fermi function, The parameter
in the Fermi function is the Fermi level, or electrochemical potential.

5. The higher the Fermi level, the higher the probability that states in the conduction band are occupied
with mobile electrons and the lower the Fermi level, the higher the probability that states in the valence
band contain empty states or mobile holes.

6. There is a direct relation between the location of the Fermi energy and the concentration of electrons
in the conduction band and holes in the valence band.

7. The concentration of electrons and holes is an intrinsic semiconductor is ni, a material parameter. The
electron and hole concentrations can be changed by doping the semiconductor.

8. The concentration of electrons and holes can be altered by doping, but the product, n0p0 = n2i , does
not change in equilibrium (for a non-degenerate semiconductor).

9. An energy band diagram is a plot of the conduction and valence band edges vs. position.

10. The semiconductor bandstructure relates the electron energy in a crystal to its wave vector, ~k or crystal
momentum, ~~k. In the simplest case of parabolic energy bands, energy and crystal momentum are
related by the effective mass.

11. Quantum confinement introduces subbands in the conduction and valence bands and produces quasi-
two-dimensional electrons with a dispersion, E(~k), and a density-of-states that differs from those of
unconfined, three-dimensional electrons in the bulk.
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2.1 Introduction

The operation of a semiconductor device like a transistor is determined by: 1) electrostatics, which determines
how the energy bands are controlled by the terminal voltages, and 2) transport, which determines how
quickly electrons and holes can flow through the device. Understanding electrostatics is non-trivial, but
straight-forward. The basic considerations have not changed for several decades. Carrier transport is more
challenging.

The traditional approach to carrier transport assumes that carriers are nearly in equilibrium with the
semiconductor lattice and that they frequently scatter off of defects, lattice vibrations, etc. Semiconductor
device theory usually begins with the drift-diffusion equation, which describes carrier transport as the sum of
a component corresponding to carriers drifting in an electric field and a component due to carriers diffusing
down a concentration gradient. The key parameter in this equation is the mobility, a material-dependent
parameter. Extensions to high electric fields can be done, as long as the electric fields vary slowly with
position. Under these conditions, the drift-diffusion equation can describe high-field velocity saturation by
using a carrier mobility that depends on the local electric field.

As device dimensions have shrunk over the past several decades, the approximations that made the drift-
diffusion equation applicable to devices began to lose validity for many devices. In short devices, non-local
transport occurs, by non-local we mean that transport does not depend simply on the local value of the
electric field and concentration gradient. The velocity does not saturate in high electric field regions if
they are short enough; instead, the velocity overshoots the bulk saturation velocity. Effects like this are
difficult to describe simply, and sophisticated simulation techniques have been developed to treat them. A
simple, but very physical approach, known as the Landauer approach is often used to treat the ballistic and
quasi-ballistic transport that occurs in modern devices.

The approaches discussed above are semiclassical, by which we mean that the charge carriers are treated
as semi-classical particles with the quantum mechanics embedded into the effective masses that describes
their dynamics in the crystal. As devices continue to scale it is becoming increasingly important to treat
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charge carriers as quantum mechanical particles, so that effects such as tunneling and quantum mechanical
reflections can be included.

In this lecture, we will briefly review the drift-diffusion approach to carrier transport, because it is the way
most electrical engineers are introduced to semiconductor devices. We will briefly introduce the Landauer
approach to transport, which is a useful and very physical way to describe small devices. Finally, non-local,
ballistic, and quantum transport will be very briefly described.

2.2 Thermal velocities

Consider a two-dimensional sheet of carriers (this might represent the channel of a MOSFET, in which
carriers flow in a thin layer near the surface). As show in Fig. 2.1, electrons scatter randomly from lattice
vibration (phonons), impurities, etc. Since equilibrium is assumed, the average velocity in any direction
is zero, 〈υx〉 = 〈υy〉 = 0. The electrons are in thermodynamic equilibrium with the vibrating lattice.
Electrons and phonons exchange energy through electron-phonon collisions, and thermodynamic equilibrium
is achieved when the average energies of electrons and the lattice are equal. In 2D, the average kinetic energy
per electron is 〈KE〉 = kBT , because statistical mechanics tells us that there is kBT/2 energy per degree of
freedom, and we are assuming two-dimensional electrons. (We are also assuming a dilute, non-degenerate
gas of electrons that satisfies Maxwell-Boltzmann statistics.) Equating the thermal energy to the electron’s
average kinetic energy, we find

1

2
m∗n

〈
υ2
〉

= kBT , (2.1)

from which we can find the rms thermal velocity as

√
〈υ2〉 = υrms =

√
2kBT

m∗n
. (2.2)

A typical value for the rms thermal velocity in a semiconductor is υrms ≈ 107 cm/s, which is a relatively
high value. The point is that at thermal equilibrium, electrons are zipping about at high velocity in random
thermal motion.

Figure 2.1: Sketch of electrons in a two-dimensional n-type semiconductor in equilibrium. Electrons exchange
thermal energy with the lattice until the temperature of the electrons equals the temperature of the lattice.
In thermal equilibrium electrons are in random thermal motion, moving at high velocity with an average
velocity that is zero in any direction.

Average thermal velocity can be defined in several different ways. We have seen one way, the rms thermal
velocity, but this thermal velocity is not the most useful one for analyzing nanoscale devices. Figure 2.2
illustrates how we define the unidirectional thermal velocity. Consider again a non-degenerate semiconductor.



2.3. NEAR-EQUILIBRIUM TRANSPORT 19

Since the Fermi level is located well below the bottom of the conduction band, E � EF for all energies of
interest, and the Fermi function simplifies to

f0 = e(EF−E)/kBT . (2.3)

If we assume parabolic energy bands, then E = Ec +m∗nυ
2/2, and we can write

f0 = e(EF−Ec)/kBT e−m
∗
nυ

2/2kBT = e(EF−Ec)/kBT e−m
∗
n(υ

2
x+υ

2
y)/2kBT , (2.4)

which is just the expected Maxwellian distribution of velocities for a dilute gas. Figure 2.2 is a plot of this
Maxwellian velocity distribution along the x-axis. Because the distribution is symmetrical, 〈υx〉 = 0, but
the average velocity of electrons with a positive υx is finite. The value of this velocity, 〈υ+x 〉, is known as the
unidirectional thermal velocity, υT , and is given by

〈
υ+x
〉

= υT =

√
2kBT

πm∗n
. (2.5)

The unidirectional thermal velocity has a numerical value of ≈ 107 cm/s for electrons in non-degenerate Si.
For a degenerate semiconductor, an analogous quantity , υ̃T ≥ υT , can be defined. Under non-degenerate
conditions, υT does not depend on the location of the Fermi level, but for a degenerate semiconductor, we
must first determine the location of EF to determine υ̃T .

Figure 2.2: Sketch of an equilibrium Maxwellian distribution of electron velocities in a non-degenerate
semiconductor illustrating what is meant by the unidirectional thermal velocity.

2.3 Near-equilibrium transport

Figure 2.3 illustrates what we mean by the term, diffusive transport. In this case, a small voltage has been
applied across the semiconductor sketched in Fig. 2.1. Electrons are still in random thermal motion, but
now there is a slightly higher chance for electrons that enter from the left contact to exit on the right contact,
as opposed to returning to the left contact. The average distance between scattering events is known as the
mean-free-path, and we assume that the resistor is much longer than a mean-free-path. We wish to compute
the current through this resistor and will begin with the definition of current,

I = Q/tt , (2.6)
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where Q is the total charge in the device and tt is the time is takes to move this charge out of the device,
the so-called transit time. We can write the charge in the device in terms of ns, the sheet carrier density per
m2 and Qn, the charge per m2 as

Q = −qnsWL = QnWL . (2.7)

The transit time can be written in terms of the length of the resistor and the average drift velocity, υd, as

tt =
L

υd
. (2.8)

Finally, by using eqns. (2.7) and (2.8) in (2.6), we find the current as

I = WQnυd , (2.9)

which is intuitively sensible. The current is proportional to the width of the resistor, because increasing the
width is like putting more resistors in parallel, to the amount of charge in the device (per m2) and to how
fast that charge is moving, υd.

Figure 2.3: Illustration of diffusive transport in a semiconductor with a small voltage applied.

We seek to relate the current in the resistor to the the applied voltage. The approach we will follow is
the classical approach, which applies when the resistor is many mean-free-paths long [1-3]. We should not
expect it to apply to modern transistors for which the channel lengths are very short.

Since the resistor is assumed to be uniform, we can relate the current to the electric field in the device,
E = V/L. Classical mechanics tells us that the momentum of a particle increases when an external force is
applied according to

dp

dt
= Fe = −qE . (2.10)

If the net momentum is destroyed by scattering in a time, τ , then the increase in momentum over this time
is

∆p = −qEτ = m∗n∆υ . (2.11)

Solving for the increase in velocity, we find

∆υ = − qτ

m∗n
E . (2.12)

Averaging over all scattering times and assuming that the average velocity at the start of the acceleration
in the electric field is zero, we find

υd = −q 〈τ〉
m∗n
E = −µnE , (2.13)

where υd is the drift velocity and µn is the electron mobility in m2/V − s.
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This simple derivation indicates that we expect the average velocity of electrons in eqn. (2.9) to be
proportional to the electric field with the constant of proportionality being the mobility.

µn =
q 〈τ〉
m∗n

m2/V − s . (2.14)

Equations (2.13 ) and (2.14) are known as the Drude model for electrical conduction, and its use in eqn.
(2.13) gives a good description of carrier transport as long as the electric field is not too large (and as long
as the electron density, ns is uniform).

Figure 2.4 illustrates a different case, for which the electric field is zero, but ns varies with position. In
this case, we inject a flux of electrons on the left side and collect them on the right. Electrons diffuse from
the left to the right, and the current density is given by

Jn = I/W = (−q)
[
−Dn

dns
dx

]
= qDn

dns
dx

, (2.15)

where Dn is the diffusion coefficient in m2/s.

Figure 2.4: Illustration of electron diffusion in a semiconductor that is many mean-free-paths long. Electrons
are injected at the left and collected at the right. The result is a diffusive flux of electrons from the left to
the right.

Diffusive transport occurs in the absence of an electric field or in the presence of a small electric field.
Since these are independent processes near equilibrium, we can add them to find the drift-diffusion equation,

Jn = I/W = nsqµnE + qDn
dns
dx

A/cm

Dn/µn = kBT/q
. (2.16)

The relation between Dn and µn in eqn. (2.16) is known as the Einstein relation. The drift-diffusion equation
is the cornerstone of semiconductor traditional device theory, but it must be used with great caution when
applying it to nanoscale devices whose dimensions are typically only a few mean-free-paths long.

We conclude this section by writing the transport equation in a different way. Recall from Lecture 1 that
we can relate the equilibrium carrier density to the Fermi level. In this case we find,

nS0 = N2De
(EF−Ec)/kBT , (2.17)
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where N2D is the 2D effective density of states and the superscript, “0”, reminds us that we are in equilibrium.
If we are out of equilibrium, but still near equilibrium, then we can write a similar expression

ns = N2De
(Fn−Ec)/kBT , (2.18)

where Fn is the electrochemical potential for electrons. In equilibrium, thermodynamics tells us that the
Fermi level (the electrochemical potential in equilibrium) is constant, but out of equilibrium, the electro-
chemical potential may vary with position. If we use eqn. (2.18) in the drift-diffusion equation, (2.16), we
find a simple expression for the current density

Jn = nsµn
dFn
dx

. (2.19)

Equation (2.19) is an important result. It states that gradients in the electrochemical potential drive current
flow. It looks as though we have derived this result from the drift-diffusion equation, but it is really much
more general and can be derived from non-equilibrium thermodynamics [4]. In fact, the drift-diffusion
equation, (2.16), should be derived from (2.19). The approach used here simply shows that eqn. (2.16) is
consistent with a more fundamental description of transport.

Relation between MFP, diffusion coefficient, and mobility

Near equilibrium there is a simple relation between the average mean-free-path, the diffusion coefficient, and
the mobility. Since the mobility is frequently known, these relations can be used to estimate the mean-free-
path from the measured mobility. The relation between mean-free-path and diffusion coefficient is the most
direct. For a non-degenerate semiconductor, one can show, that [6]

Dn =
υTλ0

2
, (2.20)

where λ0 is a specially defined, average mean-free-path for backscattering [6].

Since the mobility and diffusion coefficient are related by the Einstein relation, we can write

µn =
Dn

kBT/q
=

υTλ0
2 (kBT/q)

. (2.21)

Equation (2.21) gives the mobility in terms of the mean-free-path. In practice, it is usually the mobility that
is known, and the mean-free–path is deduced by solving eqn. (2.21). Reference [6] discussed the relation
between mobility and mean-free-path when the semiconductor is not non-degenerate.

Exercise: Estimating the mean-free-path from the mobility

To determine whether ballistic transport is possible, we should compare the mean-free-path between scat-
tering events to the channel length (or to the critical part of the channel that controls the current). Assume
a near-equilibrium mobility of 250 cm2/V − s (typical for a Si MOSFET) and estimate the mean-free-path.

Solving eqn. (2.21) for the mean-free-path, we find:

λ0 =
2 (kBT/q)µn

υT
. (2.22)

The unidirectional thermal velocity is defined in eqn. (2.5). For electrons in a Si MSOFETs under the on
state, we should use m∗n = m∗t = 0.19m0. By inserting numbers in eqn. (2.22), we find a mean-free-path for
backscattering of about 13 nm - close to the length of the channel in current state-of-the-art MOSFETs. We
conclude that operation near the ballistic limit is a real possibility for nanoscale transistors.
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2.4 High-field transport

Figure 2.5 is a sketch of the average electron velocity vs. electric field for electrons in bulk silicon. By
“bulk”, we mean many mean-free-paths long. For small fields (less than about 104 V/cm, the velocity is
proportional to the electric field, as expected from eqn. (2.13). As the electric field increases well above 103

V/cm, the drift velocity begins to increase sub linearly, and when the electric field reaches about 104 V/cm,
the drift velocity saturates at υsat ≈ 107 cm/s in Si. Electron transport under these conditions is known as
high-field or hot carrier transport [7].

Figure 2.5: Typical velocity vs. electric field characteristic for electrons in bulk silicon at room temperature.

It can be difficult to compute the velocity vs. electric field characteristic from very low to high electric
fields, but the general features are readily understood. For low fields, the drift velocity is proportional to the
electric field, as discussed in Sec. 2.3. As the electric field increases, the average electron energy increases
above the equilibrium value of kBTL, where TL is the temperature of the lattice. As the energy increases,
the scattering rate generally increases, because the density-of-states increases with energy, so there are more
final states for the electrons to scatter to. The increased scattering means that the average time between
scattering events, 〈τ〉, decreases. According to eqn. (2.14), this means that the mobility decreases for large
electric fields. The decreasing mobility with increasing electric field produces a sublinear increase in velocity.
At very high fields, the decrease in mobility becomes linear with electric field in bulk silicon, and the velocity
saturates. In other semiconductors, the velocity vs. electric field characteristics can be more complicated,
but the high field velocity is alway considerably less than what would be estimated from the near-equilibrium
mobility.

To determine whether modern transistors operate in the low or high electric field regions, we can do a
simple estimate. State of the art MOSFETs have channel lengths of about 20 nm and operate at a drain to
source voltage of about 1 V. The electric field is nonlinear within the channel, but we can assume that it is
linear to estimate the average electric field in the channel. Accordingly, we find,

E ≈ 1

20

V

nm
= 500, 000 V/cm . (2.23)

The electric fields in modern transistors are very high, so it would seem reasonable to assume that the
velocity saturates in the channel of modern MOSFETs when operated at high VDS (but see the discussion
in Sec. 2.5).

One common approach to the modeling of electron transport under high electric fields is to use eqn.
(2.16) but replace the near-equilibrium mobility with an electric field dependent mobility,

J = nsqµn (E) E + kBTµn (E)
dns
dx

A/cm . (2.24)



24 CHAPTER 2. TRANSPORT

By specifying the field-dependent mobility such that the measured velocity vs. field characteristic is re-
produced, this approach can treat high high electric fields as well as low ones. But this approach assumes
that the carrier velocity at a given location depends only on the electric field at that location, which can be
justified when the electric field varies slowly in space. This assumption breaks down in modern transistors,
which have high electric fields that vary rapidly with position.

2.5 Non-local transport

Because the electric field in the channel is so high, we might expect the velocity to saturate in the channel of
a Si MOSFET. Figure 2.6 shows the results of a numerical simulation that accurately captures the physics of
high-field transport with electric fields that vary rapidly with position. This simulation is of electron transport
in a 30 nm channel length MOSFET [8]. Each dot in the image at the left corresponds to an electron, which
is tracked through the device as it is accelerated by the electric field and as its energy and momentum are
affected by random scattering processes. Surprisingly, the average velocity vs. position plotted on the right
shows no sign of velocity saturation at all. The average velocity is well over υsat ≈ 107cm/s over the entire
channel. The reason is that in short devices, there is not enough time for scattering to reduce the velocity
to υsat – electrons scatter only a few times before they leave the device. In bulk Si with a high electric field,
electrons scatter often, and their velocity saturates.

Understanding how this velocity overshoot or non-local transport affects the IV characteristics of sub-
micron channel length MOSFETs was the subject of a great deal of research in the 1980’s and 90’s. The
physics are readily understood [7], but sophisticated simulations are required to calculate a specific velocity
vs. electric field characteristic. The average velocity at a specific position is not simply related to the electric
field at that location; a drift-diffusion equation with a local field-dependent mobility cannot describe velocity
overshoot. Simulations that capture these effects are indispensable in designing transistors.

Figure 2.6: Results of a Monte Carlo simulation of electron transport in a 30 nm channel length Si MOSFET
under high gate and drain bias. Left: A “snapshot” in time showing the location and energy of electrons in
the device. Right: Average electron velocity vs. position. (From: D. Frank, S. Laux, and M. Fischetti, Int.
Electron Dev. Mtg., Dec., 1992.)

2.6 Ballistic and quasi-ballistic transport

We have discussed near-equilibrium transport in which the average electron velocity is proportional to the
electric field, high-field transport in a long semiconductor, for which the velocity saturates, and non-local
transport in short, high-field regions, where the velocity can be much higher than the bulk saturation velocity.
In each of these cases, the resulting average velocity is an interplay between the effect of the electric field
and the scattering processes, but channel lengths have become so short that we should also consider the
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possibility of ballistic transport, in which electrons travel from the source to the drain without scattering at
all.

To determine whether ballistic transport is possible, we should compare the mean-free-path (the average
distance between scattering events) to the device length (or to the critical part of the device that controls the
current). As discussed earlier, the near-equilibrium mean-free-path for backscattering is close to the length
of the channel in current state-of-the-art MOSFETs. The real situation is, however, more complicated; near
the drain, electrons gain a lot of kinetic energy and scatter more, so their mean-free-path is reduced. It turns
out that well-designed MOSFETs have a short bottleneck region that controls the current, and the length
of this bottleneck is only a small fraction of the channel length. As a result, drain currents near the ballistic
limit are expected in nanoscale transistors.

During the 1980’s and 1990’s, our scientific understanding of ballistic electron transport in nano structures
advanced considerably. For large structures, we write the conductance of a two-dimensional resistor (like the
channel of a MOSFET) as

G = σsW/L = nsqµnW/L , (2.25)

where σs is the sheet conductance, W is the width of the conductor, and L is its length. As the length
approaches zero, the conductance should become infinite, but it is found to approach the finite value

G =
2q2

h
MT , (2.26)

where q is the magnitude of the charge on an electron, h is Planck’s constant, M is the number of conducting
“channels”, and T is the transmission, a number between zero and one. (If you think of the conductor as a
highway carrying electrons, the number of lanes is analogous to the number of channels, and the probability
of getting from the beginning to the end of your trip is the transmission.)

Figure 2.7 shows the result of a remarkable experiment. The conductance of a 2D conductor was measured
as the width of the conductor was varied (electrically by a reverse biased Schottky barrier). The measured
conductance was observed to increase in steps of 2q2/h (the quantum of conductance) as the width of the
conductor increased and the number of channels, M , increased in steps. These measurements were done
at a temperature of 4 K to minimize scattering and assure ballistic transport (T = 1). Device simentions
lengths have scaled to such short dimensions that ballistic transport and quantized conduction now need to
be considered in modern transistors operating at room temperature. The first two volumes in this lecture
notes series discuss the theory [5] and application [6] of the Landauer approach, which we will use in these
lectures to describe transport in nanoscale channels.

Figure 2.7: Experiments of van Wees, et al. experimentally demonstrating that conductance is quantized.
Left: sketch of the device structure. Right: measured conductance. (Data from: B. J. van Wees, et al.,
Phys. Rev. Lett. 60, 848851, 1988. Figures from D. F. Holcomb, “Quantum electrical transport in samples
of limited dimensions”, Am. J. Phys., 67, pp. 278-297, 1999. Reprinted with permission from Am. J. Phys.
Copyright 1999, American Association of Physics Teachers.)
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2.7 Quantum transport

The transport effects discussed so far are semiclassical – they consider electrons to be particles with the
quantum mechanics being embedded in the band structure or effective mass, but as devices continue to
shrink, it is becoming important to consider explicitly the quantum mechanical nature of electrons. We
expect that quantum mechanical effects will become important when the potential energy changes rapidly
on the scale of the electron’s de Broglie wavelength. As discussed in Sec. 1.8, this happens under high gate
voltage in the direction normal to the channel and for all gate voltages in structures that have a thin Si
channel. The resulting quantum confinement alters the energy levels and changes the density-of-states.

Electron transport can also be affected by quantum mechanics. For example, in very short channel
devices, the potential along the direction of current flow may vary rapidly, and quantum transport becomes
important. A simple estimate of the de Broglie wavelength of thermal equilibrium electrons in Si (recall eqn.
(1.34) gives about 10 nm, which is not much less than the present day channel lengths of transistors. Powerful
techniques to treat the quantum mechanical transport of electrons in transistors have been developed [9].
Figure 2.8 is an example. As MOSFET channel lengths shrink below 10 nm, it is becoming increasingly
necessary to describe electron transport quantum mechanically, but for channel lengths above about 10 nm,
the semiclassical picture generally works well.

Figure 2.8: A quantum mechanical simulation of electron transport in a 10 nm channel length Si MOSFET.
The white line is the electron potential energy (the bottom of the conduction band) under high gate and
drain bias. The plot illustrates the energy resolved electron density. Quantum mechanical reflection from
the potential energy barrier is observed as is quantum mechanical tunneling of electrons under the energy
barrier. This figure is the result of a simulation by the nanoMOS program [9].

2.8 The semiconductor equations

We conclude by very briefly summarizing the process for analyzing or simulating a semiconductor device.
As shown in Fig. 2.9, there are two parts to the procedure. To solve for the current, we solve a transport
problem that describes how the charge flows in the device. In the simplest case, this might involve a drift-
diffusion equation like eqn. (2.16) for the mobile charge density. But the drift-diffusion equation depends
on the electrostatic potential, which depends on the fixed (e.g. dopant) charge and the mobile charge itslef,
which we are trying to compute. If we knew the mobile charge throughout the device, then we would solve
the Poisson equation for the electric field (or electrostatic potential) and then use that electric field in the
transport equation. Because these two processes are coupled, an iterative solution is needed.

Figure 2.9 summarizes the procedure. If we begin with the transport problem, then we need to guess the
electrostatic potential throughout the device. Knowing the electrostatic potential, we can solve the transport
problem to find the spatial distribution of mobile charge in the device, n(~r) and p(~r). Knowing the spatial
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distribution of charge, we can then solve the Poisson equation for the electrostatic potential throughout the
device, V (~r). It is not likely that the computed V (~r) will agree with the value guessed to start the process,
so the transport problem has to be solved again for updated values of n(~r) and p(~r), which can then be used
in the Poisson equation to update V (~r) again. The process continues until n(~r), p(~r) and V (~r) converge to
within some tolerance.

Figure 2.9: A simple representation of the process used to analyze or simulate a semiconductor device.
One part is the solution of a transport problem to determine how mobile charge flows in the device. The
second part is the solution of the Poisson equation to determine the electrostatic potential that results from
a distribution of mobile charge. The two parts are coupled, so an iterative process is necessary.

For the electrostatics part of the process, the Poisson equation is almost universally used. For some very
small structures, many body corrections are sometimes used, but the Poisson equation is generally adequate
for devices. For the transport part of the process, there are several options with drift-diffusion based
approaches being the simplest (and still most widely-used) and dissipative quantum transport approaches
being the most sophisticated (and seeing increased usage). To summarize the self-consistent process, we will
adopt the drift-diffusion approach.

For the transport part of the problem, we need two bookkeeping equations, one for electrons and one for
holes. For electrons, the bokkeeping equation is the continuity equation for electrons, which is written as

∂n(~r)

∂t
= −∇ ·

(
~Jn(~r)

−q

)
+Gn(~r)−Rn(~r) . (2.27)

In words, this equation is interpreted as follows. The time rate of change of the electron concentration
at the location, ~r, is the sum of three components. The first is minus the divergence of the electron flux.
(The divergence represents the net outflow of a quantity, so minus the divergence represents the net flow
of electrons in to the position, ~r.) The term, Gn(~r), describes the generation of electrons by, for example,
optical excitation or impact ionization. Finally, the terms, Rn(~r), describes the recombination of electrons
with holes through radiative, defect-assisted, or other processes. Equation (2.27) is simply a bookkeeping
equation that tells us how to account for the increase or decrease of the electron density. A similar equation
for holes can be written as

∂p(~r)

∂t
= −∇ ·

(
~Jp(~r)

q

)
+Gp(~r)−Rp(~r) . (2.28)

To actually solve these equations, constitutive relations are needed. For example, for the electron current
densities, we could use eqn. (2.16) and a similar drift-diffusion equation for holes. Expressions for the
generation and recombination rates in terms of the electron and hole densities and the electrostatic potential
would also need to be specified.

For the second part of the process, we solve the Poisson equation:

∇ · ~D = −∇ · (ε∇V (~r)) = ρ(~r) , (2.29)
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where the space charge density is

ρ(~r) = q
[
p(~r)− n(~r) +N+

D (~r)−N−A (~r)
]
, (2.30)

where N+
D and N−A are the ionized dopant densities.

The combined set of equations, the two continuity equations, the Poisson equations, and the constitutive
equations for the electron and hole currents and the space charge density,

∂n(~r)

∂t
= −∇ ·

(
~Jn(~r)

−q

)
+Gn(~r)−Rn(~r)

∂p(~r)

∂t
= −∇ ·

(
~Jp(~r)

q

)
+Gp(~r)−Rp(~r)

∇ · ~D = −∇ · (ε∇V (~r)) = ρ(~r)

Jn = nqµnE + qDn
dn

dx
A/cm2

Jp = pqµnE − qDp
dp

dx
A/cm2

ρ(~r) = q
[
p(~r)− n(~r) +N+

D (~r)−N−A (~r)
]

C/cm3

, (2.31)

are often referred to as “the semiconductor equations.” When supplemented by appropriate constitutive
relations for the generation and recombination processes, these equations are three coupled, nonlinear partial
differential equations in three unknowns, n(~r), p(~r) and V (~r). Computer programs that solve these equations
are widely used. When we analyze a semiconductor device analytically, we generally simplify the equations,
but are essentially following the same process.

Finally, we should note that the semiconductor equations are not a fundamental description of semi-
conductor devices in the same way that Maxwell’s Equations fundamentally describe electromagnetic fields.
There are several simplifying assumptions in eqns. (2.31), especially in the transport equations. Two major
themes of research in the past few decades have been on the development of efficient numerical algorithms
to solve equations like (2.31) and improved descriptions of the underling physics in these equations.

2.9 Summary

Our goal in this lecture has been to remind you of the traditional approach to carrier transport in semicon-
ductor devices and to quickly review some topics in advanced transport theory. The key points to remember
are:

1. The cornerstone of traditional semiconductor device theory is the drift–diffusion equation: J =
nsqµnE + qDn dns/ dx A/cm.

2. At more fundamental level, current is related to the gradient of the electrochemical potential according
to J = nsµn dFn/ dx.

3. The above two equations are valid near-equilibrium. For high electric fields, we can extend these
equations with acceptable accuracy, as long as the electric field does not vary too rapidly with position.

4. When the electric field is low, the average electron velocity is proportional to the electric field, but for
high electric fields, the velocity of electrons in bulk Si saturates at ≈ 107 cm/s.

5. The electric field in a short channel MOSFET is very high, but the velocity does not saturate because
the electrons leave the device before they have a chance to scatter very often. The velocity in the
channel overshoots the saturated velocity.
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6. For very short channels, ballistic transport is possible. The Landauer approach provide simple, physical
way to describe ballistic transport. It can also describe diffusive transport in which scattering is
strong. Because it works from the ballistic to diffusive limit, the Landauer approach provides a suitable
framework for modeling transport in modern devices.

7. When the potential in the channel changes abruptly on the scale of the electron’s wavelength, elec-
trons cannot be treated a semi-classical particles. Quantum confinement changes the energy levels
and density-of-states, and quantum transport along the channel describes quantum reflections and
tunneling.

8. Analyzing a semiconductor device consists of two parts. First, solving a transport problem to describe
the flow of mobile charge and second, solving the Poisson equation to compute the electrostatic potential
that results from a given distribution of mobile charge.
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