Fundamentals of Nanoelectronics, Basic Concepts Unit 4
 Prof. Supriyo Datta
 L4.8 Quiz
 Answers

4.8. Shannon Entropy

4.8a We have a collection of spins randomly oriented with probability $3 / 4$ of being up and probability $1 / 4$ of being down. The entropy per spin is
(a) $k \ln 2$
(b) $k\left(\ln 4 \frac{3}{4} \ln 3\right)$
(a) $k \ln 3$
(a) $k\left(\ln 4+\frac{3}{4} \ln 3\right)$
(e) None of the above
$S=k\left(\frac{3}{4} \ln \frac{3}{4}+\frac{1}{4} \ln \frac{1}{4}\right)=k\left(\ln 4 \frac{3}{4} \ln 3\right)$
4.8b Consider contacts 1 and 2 held at the same temperature T, but at two different electrochemical potentials $\mu_{1}>\mu_{2}$. If a number of electrons $\quad N$ is transferred from 1 to 2 , the overall increase in entropy is
(a) $\frac{N}{\underline{T}+\underline{T}}$
(b) $N\left(\frac{1}{1} \begin{array}{l}2 \\ T\end{array}\right)$
(c) $N\left(\frac{1_{2}+}{T}\right)$
(d) $\frac{N}{\underline{T} \quad T}$

12
(e) None of the above

