Fundamentals of Nanoelectronics, II: Energy Band Model Prof. Supriyo Datta L2.8 Quiz <u>Answers</u>

2.8. Quantum Capacitance

$$N = \oint_{-\frac{1}{2}}^{+\frac{1}{2}} dE D(E - U) f_0(E)$$

$$U = U_0(N - N_0) + b(-qV_G)$$

by a factor of ten with

2.8a. The result that the electron density can be changed

a gate voltage ~ 60 mV is obtained under the assumption that

(a) b=1 in Eq.(B)

- (b) U_0 is negligible in Eq.(B)
- (c) The non-degenerate approximation for the Fermi function can be used in Eq.(A)
- (d) All three above, namely, (a), (b) and (c) (e) Only (a) and (c)

2.8b. The plots C1, C2 for electron density versus gate solving Eqs.(A,B), with all the same parameters, except uses $U_0 \neq 0$.

Consider the following statements:

- (1) Plot C2 was obtained with $U_0=0$
- (2) Plot C1 was obtained with $U_0 \neq 0$
- (3) The quantum capacitance is proportional to
- (4) The quantum capacitance is proportional to
 - (a) Only statement 3 is correct
 - (b) Only statement 4 is correct
 - (c) Only statements 1, 2 and 3 are correct
 - (d) Only statements 1, 2 and 4 are correct
 - (e) None of the above

voltage were obtained by that one uses $U_0=0$ and one

the slope of C2 the slope of C1.