Fundamentals of Nanoelectronics, II: Energy Band Model

Prof. Supriyo Datta

L2.2 Quiz

<u>Answers</u>

2.2. E(p) or E(k) relations

2.2a. The velocity n(E) is *always* related to the momentum p(E) by the

relation

(a)
$$n = \frac{p}{m}$$

(b) $n = \frac{p^2}{2m}$

(c) $n = n_0$ (constant independent of p)

(d)
$$n = \sqrt{\frac{2p}{m}}$$

(e) None of the above

$$\mathcal{N} = \frac{dE}{dp}$$
, actual relation between velocity and momentum depends on energy-momentum relation. Parabolic E(p) gives choice (a).

2.2b. A material with an energy momentum relation $E(p) = E_c + K p^2$, has a velocity n(E) (d: number of dimensions, K: positive constant)

(a) $n(E) \sim (E - E_c)^{1+(d/a)}$ (b) $n(E) \sim (E - E_c)^{1+(1/a)}$ (c) $n(E) \sim (E - E_c)^{1-(1/a)}$ (d) $n(E) \sim (E - E_c)^{1-(d/a)}$

(e) none of the above

$$\mathcal{D}(E) = \frac{dE}{dp} = aK p^{a-1} \sim \left(E - E_c\right)^{(a-1)/a}$$