Prof. Supriyo Datta

L1.4 Quiz

Answers

1.4. Conductance Formula

1.4a. In obtaining the expression for the conductance

$$\frac{I}{V} = \int_{-\infty}^{+\infty} dE \ G(E) \left(-\frac{\partial f_0(E)}{\partial E} \right)$$

from the current expression

$$I = \frac{1}{q} \dot{0}_{-}^{+} dE G(E) (f_1(E) - f_2(E))$$

the key assumption is that

(a) the applied voltage V is much less than kT

(b) the applied voltage V is much less than kT / q

(c) the applied voltage V is much greater than kT / q

(d) the applied voltage V is much less than the bandgap

(e) none of the above

1.4b. The function F(E) shown here is

(a) the Fermi function, $f_0(E)$

(b) $1 - f_0(E)$

(c) $1 + f_0(E)$

(d) $kT \P f_0 / \P E$

(e) $- kT \, \P f_0 \, / \, \P E$

