ECE 659 EXAM V Monday May 1 2017, 8-10AM

NAME : SOLUTION

CLOSED BOOK

All four questions carry equal weight
Please show all work.
No credit for just writing down the answer, even if correct.
5.1. Consider a system having a very large number of degenerate levels with energy ε with an electron-electron interaction energy related to the number of electrons N by the relation

$$
U(N)=\frac{U_{0}}{2} N(N-1)
$$

At what value of the electrochemical potential μ, will the equilibrium number of electrons change from 100 to 101 ?

SOLUTION:

$$
\begin{array}{cc}
\text { States } & \boldsymbol{E} \boldsymbol{-} \boldsymbol{\mu} \boldsymbol{N} \\
N=100 & 100(\epsilon-\mu)+U_{0} \times 50 \times 99 \\
N=101 & 101(\epsilon-\mu)+U_{0} \times 50 \times 101
\end{array}
$$

Transition from N $=100$ to $\mathrm{N}=101$ occurs when

$$
(E-\mu N)_{100}=(E-\mu N)_{101}
$$

that is, when

$$
\begin{array}{r}
\epsilon-\mu+100 U_{0}=0 \\
\rightarrow \mu=\epsilon+100 U_{0}
\end{array}
$$

5.2. Consider a quantum dot with 4 degenerate levels, all with the same energy ε, in equilibrium with a reservoir with electrochemical potential μ and temperature T. If there were no interactions, the average number of electrons at equilibrium would be given by

$$
\langle n\rangle=\frac{4}{1+e^{(\varepsilon-\mu) / k T}}
$$

Obtain an expression for the average number of electrons if the electron-electron interaction is so large that no more than one of the 4 levels can be occupied at the same time.

SOLUTION:

There is one zero-electron state with probability

$$
P_{0}=\frac{1}{Z}
$$

and 4 one-electron states each with a probability

$$
\begin{aligned}
& P_{1}=\frac{e^{-x}}{Z}, \quad x \equiv \frac{\varepsilon-\mu}{k T} \\
& <n>=\frac{\sum_{n}^{n} n P_{n}}{\sum_{n} P_{n}}=\frac{4 P_{1}}{P_{0}+4 P_{1}} \\
& <n>=\frac{4 e^{-x}}{1+4 e^{-x}}=\frac{4}{4+e^{x}}=\frac{4}{4+e^{(\varepsilon-\mu) / k T}}
\end{aligned}
$$

5.3. Consider a single quantum dot with just one level with energy ε. We wish to find the current as a function of the electrochemical potential $\mu_{2}=\mu_{1}+q V$ (keeping μ_{1} fixed) using the Fock space picture by writing

$$
\frac{d}{d t}\left\{\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}=\left[W_{1}+W_{2}\right]\left\{\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right\}
$$

where the W_{1} and W_{2} matrices describe the transition rates between the different states due to electron exchange with contacts 1 and 2 respectively which are held in equilibrium with electrochemical potentials μ_{1} and μ_{2}.
(a) Write down the matrices W_{1} and W_{2} is terms of the Fermi functions in contacts 1,2 .
(b) Obtain the steady-state probabilities P_{0} and P_{1}.
(c) Obtain the steady-state current.

SOLUTION:

(a)

$$
W_{1}=\gamma_{1}\left[\begin{array}{cc}
-f_{1} & 1-f_{1} \\
+f_{1} & -\left(1-f_{1}\right)
\end{array}\right] \quad W_{2}=\gamma_{2}\left[\begin{array}{cc}
-f_{2} & 1-f_{2} \\
+f_{2} & -\left(1-f_{2}\right)
\end{array}\right]
$$

(b)

$$
\begin{aligned}
& \left\{\begin{array}{l}
0 \\
0
\end{array}\right\}=\left[\begin{array}{ll}
-\gamma_{1} f_{1}-\gamma_{2} f_{2} & \gamma_{1}\left(1-f_{1}\right)+\gamma_{2}\left(1-f_{2}\right) \\
\gamma_{1} f_{1}+\gamma_{2} f_{2} & -\gamma_{1}\left(1-f_{1}\right)-\gamma_{2}\left(1-f_{2}\right)
\end{array}\right]\left\{\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right\} \\
& \frac{P_{1}}{P_{0}}=\frac{\gamma_{1} f_{1}+\gamma_{2} f_{2}}{\gamma_{1}\left(1-f_{1}\right)+\gamma_{2}\left(1-f_{2}\right)} \rightarrow \quad P_{1}=\frac{\gamma_{1} f_{1}+\gamma_{2} f_{2}}{\gamma_{1}+\gamma_{2}}, \quad P_{0}=1-P_{1}
\end{aligned}
$$

(c)

$$
\begin{gathered}
I=q \gamma_{1}\left\{\begin{array}{ll}
0 & 1
\end{array}\right\}\left[\begin{array}{cc}
-f_{1} & 1-f_{1} \\
+f_{1} & -\left(1-f_{1}\right)
\end{array}\right]\left\{\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right\}=q \gamma_{1}\left(f_{1} P_{0}-\left(1-f_{1}\right) P_{1}\right)=\gamma_{1}\left(f_{1}-P_{1}\right) \\
\quad=q \gamma_{1}\left(f_{1}-\frac{\gamma_{1} f_{1}+\gamma_{2} f_{2}}{\gamma_{1}+\gamma_{2}}\right)=q \frac{\gamma_{1} \gamma_{2}}{\gamma_{1}+\gamma_{2}}\left(f_{1}-f_{2}\right)
\end{gathered}
$$

5.4. Consider two coupled quantum dots each with two spin-degenerate levels, described by the one-electron Hamiltonian,
$h=\begin{gathered}u_{1} u_{2} \\ d_{1}\end{gathered} d_{2},\left[\begin{array}{llll}\varepsilon & t & 0 & 0 \\ t & \varepsilon & 0 & 0 \\ 0 & 0 & \varepsilon & t \\ 0 & 0 & t & \varepsilon\end{array}\right]$

having an intra-dot interaction energy U and zero inter-dot interaction energy.
We have seen that the Hamiltonian for two-electron states can be written as

$$
H_{2}=\left[\begin{array}{cccccc}
u_{1} d_{1} & u_{2} d_{2} & u_{1} d_{2} & u_{2} d_{1} & u_{1} u_{2} & d_{1} d_{2} \\
{\left[\begin{array}{ccccccc}
2 \varepsilon+U & 0 & t & t & 0 & 0 \\
0 & 2 \varepsilon+U & t & t & 0 & 0 \\
t & t & 2 \varepsilon & 0 & 0 & 0 \\
t & t & 0 & 2 \varepsilon & 0 & 0 \\
0 & 0 & 0 & 0 & 2 \varepsilon & 0 \\
0 & 0 & 0 & 0 & 0 & 2 \varepsilon
\end{array}\right]}
\end{array}\right.
$$

which can be transformed into
$\frac{u_{1} d_{1}+u_{2} d_{2}}{\sqrt{2}} \quad \frac{u_{1} d_{1}-u_{2} d_{2}}{\sqrt{2}} \quad \frac{u_{1} d_{2}+u_{2} d_{1}}{\sqrt{2}} \quad \frac{u_{1} d_{2}-u_{2} d_{2}}{\sqrt{2}} \quad u_{1} u_{2} \quad d_{1} d_{2}$

Explain how you would obtain the lowest energy eigenvalue and the corresponding eigenvector making use of the result that the eigenvectors of

$$
\vec{\sigma} \cdot \hat{n} \equiv \sigma_{x} \sin \theta \cos \phi+\sigma_{y} \sin \theta \sin \phi+\sigma_{z} \cos \theta
$$

corresponding to eigenvalues +1 and -1 can be written as

$$
\left\{\begin{array}{l}
c \\
s
\end{array}\right\},\left\{\begin{array}{l}
-s^{*} \\
c^{*}
\end{array}\right\}
$$

respectively, where

$$
c \equiv \cos (\theta / 2) e^{-i \varphi / 2}, s \equiv \sin (\theta / 2) e^{+i \varphi / 2}
$$

SOLUTION:

The lowest energy eigenvalue comes from the 2×2 block

$$
\begin{array}{cc}
\frac{u_{1} d_{1}+u_{2} d_{2}}{\sqrt{2}} & \frac{u_{1} d_{2}+u_{2} d_{1}}{\sqrt{2}} \\
{\left[\begin{array}{cc}
2 \epsilon+U & 2 t \\
2 t & 2 \epsilon
\end{array}\right]}
\end{array}
$$

which can be written as

$$
\begin{array}{r}
\left(2 \epsilon+\frac{U}{2}\right) I+\frac{U}{2} \sigma_{z}+2 t \sigma_{x} \\
=\left(2 \epsilon+\frac{U}{2}\right) I+B \cos \theta \sigma_{z}+B \sin \theta \sigma_{x} \\
=\left(2 \epsilon+\frac{U}{2}\right) I+B \vec{\sigma} \cdot \hat{n} \\
\text { where } B=\sqrt{\left(\frac{U}{2}\right)^{2}+(2 t)^{2}} \\
a n d \tan \theta=\frac{4 t}{U}
\end{array}
$$

The lowest eigenvalue is

$$
\left(2 \epsilon+\frac{U}{2}\right)-B=\left(2 \epsilon+\frac{U}{2}\right)-\sqrt{\left(\frac{U}{2}\right)^{2}+(2 t)^{2}}
$$

And the corresponding eigenvector is

$$
-\sin \frac{\theta}{2} \frac{u_{1} d_{1}+u_{2} d_{2}}{\sqrt{2}}+\cos \frac{\theta}{2} \frac{u_{1} d_{2}+u_{2} d_{1}}{\sqrt{2}}
$$

Have a great summer !!

