ECE 659, EXAM IV
Friday, Apr.7, 2017, ME 1012, 330-420PM

NAME: SOLUTION

CLOSED BOOK Notes provided on last page

All four questions carry equal weight

Please show all work.
No credit for just writing down the answer, even if correct.
4.1. A contact pointing along +z is described by $\Gamma=\left[\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right]$.

What is the Γ for an identical contact pointing along $+y$?

SOLUTION:

Given: $\Gamma=\left[\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right]=\frac{\alpha+\beta}{2}[I]+\frac{\alpha-\beta}{2}\left[\sigma_{z}\right]$

If contact points along y

$$
\begin{gathered}
\Gamma=\frac{\alpha+\beta}{2}[I]+\frac{\alpha-\beta}{2}\left[\sigma_{y}\right] \\
=\frac{1}{2}\left[\begin{array}{cc}
\alpha+\beta & -i(\alpha-\beta) \\
+i(\alpha-\beta) & \alpha+\beta
\end{array}\right]
\end{gathered}
$$

4.2. An electron has a spinor wavefunction given by $\frac{1}{\sqrt{29}}\left\{\begin{array}{c}2 \\ 3-4 i\end{array}\right\}$ What are the x, y and z components of its spin \vec{S}.

SOLUTION:

$$
\begin{aligned}
\psi \psi^{+}= & \frac{1}{29}\left\{\begin{array}{c}
2 \\
3-4 i
\end{array}\right\}\left\{\begin{array}{ll}
2 & 3+4 i
\end{array}\right\} \\
& =\frac{1}{29}\left[\begin{array}{cc}
4 & 6+8 i \\
6-8 i & 25
\end{array}\right]
\end{aligned}
$$

Compare

$$
\frac{G^{n}}{2 \pi}=\frac{1}{2}\left[\begin{array}{ll}
N+S_{z} & S_{x}-i S_{y} \\
S_{x}+i S_{y} & N-S_{z}
\end{array}\right]
$$

Clearly,

$$
\begin{aligned}
& \frac{N+S_{z}}{2}=\frac{4}{29}, \frac{N-S_{z}}{2}=\frac{25}{29} \rightarrow N=1, S_{z}=-\frac{21}{29} \\
& S_{x}=\frac{12}{29}, S_{y}=\frac{16}{29}
\end{aligned}
$$

(Can do this more formally by taking traces too)

$$
\vec{S}=\frac{12}{29} \hat{x}+\frac{16}{29} \hat{y}-\frac{21}{29} \hat{z}
$$

4.3. An electron is described by a 2D Hamiltonian of the form

$$
h(\vec{k})=\left(\frac{\hbar^{2} k_{x}^{2}}{2 m}+\frac{\hbar^{2} k_{y}^{2}}{2 m}\right)[I]+\eta\left(\sigma_{x} k_{y}-\sigma_{y} k_{x}\right)
$$

(a) What is the dispersion relation, $\mathrm{E}(\mathbf{k})$?
(b) What are the (2×1) eigenspinors corresponding to each of the two branches of the dispersion relation for a specific wavevector $\quad \vec{k}=k \hat{y}$ pointing along positive y ?

SOLUTION:

Rewrite $h(k)$ as

$$
h(\vec{k})=\frac{\hbar^{2} k^{2}}{2 m}[I]+\eta k \sigma \cdot \hat{n}
$$

where

$$
\hat{n}=\frac{k_{y} \hat{x}-k_{x} \hat{y}}{k} \quad \text { and } \quad k=\sqrt{k_{x}^{2}+k_{y}^{2}}
$$

(a) $E=\frac{\hbar^{2} k^{2}}{2 m} \pm \eta k$
(b) Eigenspinors point up and down along the "effective field" which points along

$$
\hat{n}=\frac{k_{y} \hat{x}-k_{x} \hat{y}}{k}
$$

With $\quad \vec{k}=k \hat{y}$
We have

$$
\hat{n}=\hat{x} \rightarrow \theta=\frac{\pi}{2}, \phi=0
$$

So eigenspinors are given by

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
+1 \\
+1
\end{array}\right] \text { and } \frac{1}{\sqrt{2}}\left[\begin{array}{l}
+1 \\
-1
\end{array}\right]
$$

4.4. The time evolution of a single electron spin in a magnetic field is described by

$$
\begin{equation*}
i \hbar \frac{d \psi}{d t}=\mu_{B}[\vec{\sigma} \cdot \vec{B}] \psi \tag{1}
\end{equation*}
$$

The expectation value of the spin \mathbf{s} along a direction \mathbf{n} is given by

$$
\begin{equation*}
\vec{s} . \hat{n}=\psi^{+}[\vec{\sigma} \cdot \hat{n}] \psi \tag{2}
\end{equation*}
$$

so that we can write

$$
\begin{equation*}
i \hbar \frac{d}{d t} \vec{s} . \hat{n}=\left(i \hbar \frac{d}{d t} \psi^{+}\right)[\vec{\sigma} \cdot \hat{n}] \psi+\psi^{+}[\vec{\sigma} \cdot \hat{n}]\left(i \hbar \frac{d}{d t} \psi\right) \tag{3}
\end{equation*}
$$

Using Eqs.(1) and (2) show from (3) that

$$
\begin{aligned}
& \qquad \begin{aligned}
\frac{d}{d t} \vec{s} \cdot \hat{n} & =K(\vec{B} \times \vec{s}) \cdot \hat{n} \\
\text { Or equivalently } \quad \frac{d}{d t} \vec{s} & =K(\vec{B} \times \vec{s})
\end{aligned},
\end{aligned}
$$

What is the constant K ?

SOLUTION:

Using Eq.(1) we can rewrite Eq.(2) as

$$
\begin{aligned}
i \hbar \frac{d}{d t} \vec{s} \cdot \hat{n} & =-\psi^{+} \mu_{B}[\vec{\sigma} \cdot \vec{B}][\vec{\sigma} \cdot \hat{n}] \psi+\psi^{+}[\vec{\sigma} \cdot \hat{n}] \mu_{B}[\vec{\sigma} \cdot \vec{B}] \psi \\
& =-\mu_{B} \psi^{+}([\vec{\sigma} \cdot \vec{B}][\vec{\sigma} \cdot \hat{n}]-[\vec{\sigma} \cdot \hat{n}][\vec{\sigma} \cdot \vec{B}]) \psi \\
& =-\mu_{B} \psi^{+}(2 i[\vec{\sigma} \cdot(\vec{B} \times \hat{n})]) \psi \\
& =-2 i \mu_{B} \vec{s} \cdot(\vec{B} \times \hat{n}) \quad \text { Using Eq.(2) } \\
& =2 i \mu_{B}(\vec{B} \times \vec{s}) \cdot \hat{n}
\end{aligned}
$$

Hence $\quad \frac{d}{d t} \vec{s} \cdot \hat{n}=K(\vec{B} \times \vec{s}) \cdot \hat{n} \quad$ or $\quad \frac{d}{d t} \vec{s}=K(\vec{B} \times \vec{s})$
where

$$
K=\frac{2 \mu_{B}}{\hbar}
$$

NEGF Equations

$$
\begin{aligned}
G^{R} & =[E I-H-\Sigma]^{-1} \\
G^{n} & =G^{R} \Sigma^{i n} G^{A} \\
A & =G^{R} \Gamma G^{A}=G^{A} \Gamma G^{R} \\
& =i\left[G^{R}-G^{A}\right] \\
\Gamma & =\Gamma_{1}+\Gamma_{2}+\Gamma_{0} \\
\tilde{I}_{p} & =\frac{q}{h} \operatorname{Trace}\left[\Sigma_{p}^{i n} A-\Gamma_{p} G^{n}\right]
\end{aligned}
$$

Coherent transport

$I=\frac{q}{h} \int_{-\infty}^{+\infty} d E\left(f_{1}(E)-f_{2}(E)\right) \bar{T}(E)$ $\bar{T}(E) \equiv \frac{G(E)}{q^{2} / h}=\quad \operatorname{Trace}\left[\Gamma_{1} G^{R} \Gamma_{2} G^{A}\right]$

Useful Identities:

$$
(\vec{a} \times \vec{b})_{m}=\sum_{n, p} \varepsilon_{m n p} a_{n} b_{p}
$$

$\sum_{i, j} \varepsilon_{i j k} \varepsilon_{i j n}=2 \delta_{k n}$

$$
\sum_{i} \varepsilon_{i j k} \varepsilon_{i m n}=\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m}
$$

Pauli spin matrices:

$$
\begin{gathered}
\sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
+i & 0
\end{array}\right], \sigma_{z}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \quad I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\sigma_{m} \sigma_{n}=\delta_{m n} I+i \sum_{p} \varepsilon_{m n p} \sigma_{p} \\
\quad\left[\vec{\sigma} \cdot \vec{V}_{1}\right]\left[\vec{\sigma} \cdot \vec{V}_{2}\right]=\left(\vec{V}_{1} \cdot \vec{V}_{2}\right)[I]+i\left[\vec{\sigma} \cdot\left(\vec{V}_{1} \times \vec{V}_{2}\right)\right.
\end{gathered}
$$

Eigenvectors of $\vec{\sigma} \cdot \hat{n} \equiv \sigma_{x} \sin \theta \cos \phi+\sigma_{y} \sin \theta \sin \phi+\sigma_{z} \cos \theta$
corresponding to eigenvalues +1 and -1 can be written as

$$
\left\{\begin{array}{l}
c \\
s
\end{array}\right\},\left\{\begin{array}{l}
-s^{*} \\
c^{*}
\end{array}\right\}_{\text {respectively }}
$$

$$
c \equiv \cos (\theta / 2) e^{-i \varphi / 2}, s \equiv \sin (\theta / 2) e^{+i \varphi / 2}
$$

