ECE 659, EXAM III
 Friday, March 10, 2017, ME 1012, 330-420PM

NAME: SOLUTION

CLOSED BOOK

One page of notes provided, please see last page

All four questions carry equal weight

Please show all work.
No credit for just writing down the answer, even if correct.
3.1. Calculate the transmission through a single scatterer of height U in a 1D wire $(\mathrm{t}<0)$ using the expression

$$
\bar{T}(E)=\operatorname{Trace}\left[\Gamma_{1} G^{R} \Gamma_{2} G^{A}\right]
$$

in terms of E, t, U and ϵ

SOLUTION:

Treat site " 0 " as device described by $(1 \mathrm{x} 1)[\mathrm{H}]$ matrix and rest as contacts.

$$
\begin{aligned}
& {[H]=\varepsilon+U} \\
& {\left[\Sigma_{1}\right]=\left[\Sigma_{2}\right]=t e^{i k a}} \\
& {\left[\Gamma_{1}\right]=\left[\Gamma_{2}\right]=i\left(t e^{i k a}-t e^{-i k a}\right)=-2 t \sin k a} \\
& \bar{T}(E)=\left[\Gamma_{1} G^{R} \Gamma_{2} G^{A}\right] \\
& =(2 t \sin k a)^{2} \frac{1}{E-\varepsilon-U-2 t e^{i k a}} \frac{1}{E-\varepsilon-U-2 t e^{-i k a}} \\
& =(2 t \sin k a)^{2} \frac{1}{2 t \cos k a-U-2 t e^{i k a}} \frac{1}{2 t \cos k a-U-2 t e^{-i k a}} \\
& =(2 t \sin k a)^{2} \frac{1}{-U-2 i t \sin k a} \frac{1}{-U+2 i t \sin k a} \\
& =\frac{(2 t \sin k a)^{2}}{U^{2}+(2 t \sin k a)^{2}}
\end{aligned}
$$

$$
\text { where } \cos (k a)=(E-\epsilon) / 2 t
$$

3.2.

Starting from

$$
\left[\begin{array}{ccc}
E+i \eta-H_{1} & -\tau_{1}^{+} & 0 \\
-\tau_{1} & E-H & -\tau_{2} \\
0 & -\tau_{2}^{+} & E+i \eta-H_{2}
\end{array}\right]\left\{\begin{array}{c}
\Phi_{1}+\chi_{1} \\
0+\psi \\
0+\chi_{2}
\end{array}\right\}=\left\{\begin{array}{l}
\tilde{s}_{1} \\
0 \\
0
\end{array}\right\}
$$

Obtain the result

$$
E \psi=H \psi+\left(\Sigma_{1}+\Sigma_{2}\right) \psi+s_{1}
$$

Stating clearly how $\quad \Sigma_{1}, \Sigma_{2}, s_{1}$ are related to the quantities appearing in the original equation

SOLUTION:

Please see video lecture 3-L3.3 on course website.
https://www.youtube.com/watch?v=YPMgw9nL74g after 06:30
3.3. Consider a conductor described by a tight-binding model two lattice sites along the width as shown below. We wish to find the self-energy Σ.

We can represent it by a 1-D chain of the form

where $\alpha=\left[\begin{array}{ll}\varepsilon & t \\ t & \varepsilon\end{array}\right], \beta=\left[\begin{array}{ll}t & 0 \\ 0 & t\end{array}\right]$

The matrix α has eigenvalues $(\varepsilon+t)$ and $(\varepsilon-t)$
with eigenvectors $\frac{1}{\sqrt{2}}\binom{1}{1}$ and $\frac{1}{\sqrt{2}}\binom{1}{-1}$ respectively.
We can use these eigenvectors as the basis, to diagonalize the matrix α.
(a) Write down the matrices α, β. And $\Sigma(\mathrm{E})$ in this eigenvector basis (the one that diagonalizes α).
(b) Write down the matrix $\Sigma(\mathrm{E})$ in the original basis.

SOLUTION:

(a)

$$
\alpha=\left[\begin{array}{cc}
\varepsilon+t & 0 \\
0 & \varepsilon-t
\end{array}\right], \beta=\left[\begin{array}{cc}
t & 0 \\
0 & t
\end{array}\right]
$$

$$
\Sigma(E)=\left[\begin{array}{cc}
t e^{i k_{1} a} & 0 \\
0 & t e^{i k_{2} a}
\end{array}\right] \equiv\left[\begin{array}{cc}
p & 0 \\
0 & q
\end{array}\right]
$$

where k_{1} and k_{2} are given by

$$
\begin{aligned}
E & =\varepsilon+t+2 t \cos k_{1} a
\end{aligned} \rightarrow \quad \cos k_{1} a=(E-\varepsilon-t) / 2 t, ~(E-\varepsilon+t) / 2 t
$$

(b) $\quad \Sigma(E)=\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{cc}p & 0 \\ 0 & q\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{cc}p & p \\ q & -q\end{array}\right]$
$=\frac{1}{2}\left[\begin{array}{ll}p+q & p-q \\ p-q & p+q\end{array}\right]$
3.4.

$$
\phi_{x}=\frac{q A_{x} a}{\hbar}, \phi_{y}=\frac{q A_{y} a}{\hbar}
$$

A conductor in a magnetic field B can be modeled with a 2 D square lattice using nearest neighbor couplings as shown where $\mathbf{A}_{\mathbf{x}}=\mathbf{B y}$.

Do you think you can split the 2D conductor into independent conductors by transforming the basis so as to diagonalize \boldsymbol{Q}
as we do when $\mathrm{B}=0$?

Explain why or why not.

SOLUTION:

With $\mathbf{B}=\mathbf{0}, \quad \beta=\left[\begin{array}{ccc}t & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t\end{array}\right]$
which is \mathbf{t} times the identity matrix, so that it is unchanged byany basis transformation.

But in this case

$$
\beta=\left[\begin{array}{ccc}
t e^{i \phi_{n+1}} & 0 & 0 \\
0 & t e^{i \phi_{n}} & 0 \\
0 & 0 & t e^{i \phi_{n-1}}
\end{array}\right]
$$

where

$$
\phi_{n}=q B a y_{n} / \hbar
$$

so that it is not a number times an identity matrix.

We will not get independent 1D conductors, because

$$
\begin{array}{r}
\text { If we diagonalize } \alpha \\
\text { it will un-diagonalize } \beta
\end{array}
$$

This can be proved by showing that the two matrices do not commute:

$$
\alpha \beta \neq \beta \alpha
$$

NEGF Equations

$$
\begin{aligned}
G^{R} & =[E I-H-\Sigma]^{-1} \\
G^{n} & =G^{R} \Sigma^{i n} G^{A} \\
A & =G^{R} \Gamma G^{A}=G^{A} \Gamma G^{R} \\
& =i\left[G^{R}-G^{A}\right]
\end{aligned}
$$

$$
\Sigma=\Sigma_{1}+\Sigma_{2}+\Sigma_{0}
$$

$$
\begin{aligned}
& \Gamma_{0,1,2}=i\left[\Sigma_{0,1,2}-\Sigma_{0,1,2}^{+}\right] \\
\Gamma= & \Gamma_{1}+\Gamma_{2}+\Gamma_{0} \\
\Sigma^{i n}= & \underbrace{f_{1} \Gamma_{1}}_{\Sigma_{1}^{i n}}+\underbrace{f_{2} \Gamma_{2}}_{\Sigma_{2}^{i n}}+\Sigma_{0}^{i n}
\end{aligned}
$$

Coherent transport

$$
\begin{aligned}
I=\frac{q}{h} \int_{-\infty}^{+\infty} d E\left(f_{1}(E)-f_{2}(E)\right) \bar{T}(E) & \Gamma=\sum_{r} \Gamma_{r} \\
\bar{T}(E) \equiv \frac{G(E)}{q^{2} / h}=\operatorname{Trace}\left[\Gamma_{1} G^{R} \Gamma_{2} G^{A}\right] & \Sigma^{i n}=\sum_{r} \Sigma_{r}^{i n}=\sum_{r} \Gamma_{r} f_{r}
\end{aligned}
$$

Surface Green's function

$$
g_{N}^{-1}=E+i \eta-\alpha-\beta^{+} g_{N-1} \beta
$$

Self-energy

$$
\Sigma_{1}=\tau_{1} \frac{g_{1}}{\left[E+i \eta-H_{1}\right]^{-1}} \tau_{1}^{+}
$$

This integral may be useful: $\int_{-\infty}^{+\infty} \frac{d x}{x^{2}+a^{2}}=\frac{\pi}{a}$

