SPRING 2016 ECE 659 EXAM I

Friday, Jan.29, 2016, FNY B124, 230-320PM

NAME :

\qquad

CLOSED BOOK
 1 page of notes provided

All five questions carry equal weight
1.1. Describe how you obtain the relation

$$
\begin{equation*}
I=\frac{q}{h} M\left(\mu^{+}-\mu^{-}\right) \tag{A}
\end{equation*}
$$

starting from the general expression

$$
\begin{equation*}
I=\frac{q}{h} \int_{-\infty}^{+\infty} d E \tilde{M}(E)\left(f^{+}(E)-f^{-}(E)\right) \tag{B}
\end{equation*}
$$

and obtain an expression for M. Please state your assumptions clearly.

Solution:

$$
\begin{aligned}
& \text { Assume } \quad f^{ \pm}(E)=\frac{1}{1+\exp \left(\frac{E-\mu^{ \pm}}{k T}\right)}, \quad \bar{\mu}=\frac{1}{2}\left(\mu^{+}+\mu^{-}\right) \\
& \text {and } \mu^{+}-\mu^{-} \ll k T . \\
& f^{+}(E)-f^{-}(E) \approx\left(\frac{\partial f}{\partial \mu}\right)_{\mu=\bar{\mu}}\left(\mu^{+}-\mu^{-}\right)=\left(-\frac{\partial \bar{f}}{\partial E}\right)\left(\mu^{+}-\mu^{-}\right)
\end{aligned}
$$

Substituting into (B) we obtain

$$
I=\frac{q}{h} \underbrace{\int_{-\infty}^{+\infty} d E \tilde{M}(E)\left(-\frac{\partial \bar{f}}{\partial E}\right)}_{\equiv M}\left(\mu^{+}-\mu^{-}\right)
$$

which leads to (A) with M defined as shown.
1.2. For a 3D conductor (area: A, Length: L) with an energy-momentum relation

$$
E^{2}=E_{g}^{2}+v_{0}^{2} p^{2}
$$

(a) Find the functions $M(E), D(E)$ for positive $E(E>0)$.
(b) Show that the following relation is satisfied:

$$
D(E) v(E) p(E)=N(E) \cdot d
$$

Solution:

(a)

$$
\begin{aligned}
& N(E)=\frac{4 \pi}{3} A L\left(\frac{p}{h}\right)^{3}=\frac{4 \pi}{3 h^{3}} A L\left(\frac{E^{2}-E_{g}^{2}}{v_{0}^{2}}\right)^{3 / 2}=\frac{4 \pi}{3 h^{3} v_{0}^{3}} A L\left(E^{2}-E_{g}^{2}\right)^{3 / 2} \\
& D(E)=\frac{d N(E)}{d E}=\frac{4 \pi}{h^{3} v_{0}^{3}} A L\left(E^{2}-E_{g}^{2}\right)^{1 / 2} E \\
& M(E)=\pi A\left(\frac{p}{h}\right)^{2}=\frac{\pi A}{h^{2}}\left(\frac{E^{2}-E_{g}^{2}}{v_{0}^{2}}\right)
\end{aligned}
$$

(b) From (a), $\quad \frac{N(E)}{D(E)}=\frac{E^{2}-E_{g}^{2}}{3 E}$

Also, $v(E) p(E)=\frac{d E}{d p} p=\frac{2 v_{0}^{2} p^{2}}{2 E}=\frac{E^{2}-E_{g}^{2}}{E}$
Hence,

$$
D(E) v(E) p(E)=N(E) .3
$$

The relation is satisfied.

1.3. Consider an otherwise ballistic channel with M modes having a scatterer in the middle where only a fraction T of all the electrons proceed along the original direction, while the rest $(1-\mathrm{T})$ get turned around.
(a) Determine the values of μ^{+}and μ^{-}on either side of the scatterer in terms of μ_{1}, μ_{2} and T and (b) explain why the resistance associated with the voltage drop across the scatterer is given by $R_{\text {scatterer }}=\frac{h}{q^{2} M} \frac{1-T}{T}$ while the total resistance is given by $R_{\text {total }}=\frac{h}{q^{2} M T}$

Solution:

(a) Since

$$
I^{ \pm}=(q M / h) \mu^{ \pm}
$$

we can write

$$
\begin{aligned}
& \mu_{2}^{+}=T \mu_{1}^{+}+(1-T) \mu_{2}^{-} \\
& \mu_{1}^{-}=(1-T) \mu_{1}^{+}+T \mu_{2}^{-}
\end{aligned}
$$

Assume $\mu_{1}^{+}=\mu_{1}$ and $\mu_{2}^{-}=\mu_{2}$:

$$
\begin{aligned}
& \mu_{2}^{+}=\mu_{2}+T\left(\mu_{1}-\mu_{2}\right) \\
& \mu_{1}^{-}=\mu_{1}-T\left(\mu_{1}-\mu_{2}\right)
\end{aligned}
$$

(b) $\quad I=I^{+}-I^{-}=(q M / h)\left(\mu_{2}^{+}-\mu_{2}^{-}\right)=(q M / h)\left(\mu_{1}^{+}-\mu_{1}^{-}\right)$

$$
=(q M T / h)\left(\mu_{1}-\mu_{2}\right) \quad \text { Same answer on Left or Right }
$$

$$
R_{t o t a l} \equiv \frac{\mu_{1}-\mu_{2}}{q I}=\frac{h}{q^{2} M T}
$$

(c) $\quad R_{\text {scatterer }}=\frac{1}{2} \frac{\left(\mu_{1}^{+}+\mu_{1}^{-}\right)-\left(\mu_{2}^{+}+\mu_{2}^{-}\right)}{q I}=\frac{h}{q^{2} M} \frac{1-T}{T}$
1.4. (a) A three terminal conductor is described by

$$
\begin{aligned}
& I_{m}=\frac{1}{q} \sum_{n} G_{m n}\left(\mu_{m}-\mu_{n}\right) \\
& \text { where } \quad G=\frac{q^{2}}{h}\left[\begin{array}{rrr}
10 & 6 & 4 \\
4 & 10 & 6 \\
6 & 4 & 10
\end{array}\right]
\end{aligned}
$$

Is this consistent with the requirement of current conservation? Explain

Solution: Current conservation (or Kirchoff's law) requires

$$
0=\sum_{m} I_{m}=\frac{1}{q} \sum_{m, n} G_{m n}\left(\mu_{m}-\mu_{n}\right)=\frac{1}{q} \sum_{m, n}\left(G_{m n}-G_{n m}\right) \mu_{m}
$$

Since this must be true regardless of the values of μ_{m}

$$
\sum_{n}\left(G_{m n}-G_{n m}\right)=0 \rightarrow \sum_{n} G_{m n}=\sum_{n} G_{n m}
$$

The given G-matrix satisfies this requirement and hence is consistent with current conservation.
(b) A two terminal conductor is described by

$$
\begin{aligned}
& I_{m}=\frac{1}{q} \sum_{n} G_{m n}\left(\mu_{m}-\mu_{n}\right) \\
& \text { where } \quad G=\frac{q^{2}}{h}\left[\begin{array}{rr}
10 & 6 \\
4 & 10
\end{array}\right]
\end{aligned}
$$

Is this consistent with current conservation?

Solution: This G-matrix does not satisfy the above requirement and hence is not consistent with current conservation.
1.5. Evaluate the left hand side of the steady-state Boltzmann equation

$$
v_{z} \frac{\partial f_{0}}{\partial z}+F_{z} \frac{\partial f_{0}}{\partial p_{z}}
$$

where f_{0} is the equilibrium Fermi function with $E=\varepsilon\left(p_{z}\right)+U(z)$.

$$
f_{0}(E) \equiv \frac{1}{1+\exp \left(\frac{E-\mu_{0}}{k T}\right)}
$$

Note : $v_{z} \equiv \frac{d \varepsilon}{d p_{z}}, \quad F_{z} \equiv-\frac{d U}{d z}$

Solution:

$$
\begin{aligned}
& v_{z} \frac{\partial f_{0}}{\partial z}+F_{z} \frac{\partial f_{0}}{\partial p_{z}}=\frac{\partial f_{0}}{\partial E}\left(v_{z} \frac{\partial E}{d z}+F_{z} \frac{\partial E}{d p_{z}}\right)=\frac{\partial f_{0}}{\partial E}\left(v_{z} \frac{d U}{d z}+F_{z} \frac{d \varepsilon}{d p_{z}}\right)=0 \\
& \text { since } \quad v_{z} \equiv \frac{d \varepsilon}{d p_{z}}, F_{z} \equiv-\frac{d U}{d z}
\end{aligned}
$$

