## ECE 659 PRACTICE EXAM V

## Actual Exam V Tuesday, May 3, 2016 8-10AM, FRNY B124

# CLOSED BOOK

Actual Exam will have five questions.

The following questions have been chosen to stress what I consider the most important concepts / skills that you should be clear on.

- 5.1. Based on: Introduction to Lecture 16 of Text (LNE)
- **5.2.** Based on: Section 16.1, 16.2 of LNE
- **5.3.** Based on: Section 16.3, 16.4 of LNE
- **5.4.** Based on: Section 16.3, 16.4 of LNE
- 5.5. Based on: Section 16.5 of LNE
- 5.6. Based on: Section 24.3 of LNE
- 5.7. Based on: Sections 23.1-23.2 of LNE, Chapter 3 of QTAT (Reference)
- 5.8, 5.9. Based on: Sections 23.1-23.2 of LNE, Chapter 3 of QTAT (Reference)
- 5.10. Singlet and triplet states: Ref. Section 23.3 of LNE

The following topics will NOT be covered on the exam, but may be of interest to you. **A.** *Fuel value of information:* Lecture 17, Section 24.4 of LNE **B.** *Inelastic scattering:* Ref. Chapter 10 of QTAT



Consider a channel exchanging electrons and energies with three reservoirs as shown.

- (a) What relationship among the different quantities (N<sub>1</sub>, N<sub>2</sub>, E<sub>1</sub>, E<sub>2</sub>, E<sub>0</sub>) is required by
   (i) Conservation of number of electrons
  - (ii) Conservation of energy
  - (iii) Second law of thermodynamics:
- (b) Explain why for an elastic resistor our current formula

$$I = \frac{1}{q} \int dE G(E) \left( f_1(E) - f_2(E) \right)$$

is in compliance with the second law.

(c) Two materials A and B have different density of states  $D_A$  and  $D_B$  for electrons in a certain energy range. If these materials are in equilibrium with electrons flowing freely between them, will the number of electrons in this energy range in the two materials  $n_A$ 

and  $n_B$  be equal? If not, what will be the ratio  $\frac{n_A}{2}$ ? Explain.

$$n_B$$

#### SOLUTION:

Please see introductory material in Lecture 16 of Text (LNE)



**5.2.** Two systems are brought into close contact and allowed to exchange energy. Which way will the heat flow, from the one with higher dS/dE to the one with the lower dS/dE or the other way? Explain why, assuming that the total entropy must increase. (S : Entropy, E: Energy)

#### SOLUTION:

$$\Delta S = -\left(\frac{dS}{dE}\right)_{1} E(1 \to 2) - \left(\frac{dS}{dE}\right)_{2} E(2 \to 1)$$
$$E(1 \to 2) = -E(2 \to 1)$$
$$\Delta S = \left[\left(\frac{dS}{dE}\right)_{2} - \left(\frac{dS}{dE}\right)_{1}\right] E(1 \to 2)$$

But  $\Delta S \ge 0$ 

Hence 
$$\left(\frac{dS}{dE}\right)_2 > \left(\frac{dS}{dE}\right)_1$$
 if  $E(1 \rightarrow 2) > 0$ 

That is, heat flows from reservoir with smaller dS/dE to one with larger dS/dE

**5.3.** Consider photons with energy  $\hbar\omega$  having energy levels as shown. Assuming that different states are occupied with probability

$$P_i = \frac{1}{Z} e^{-E_i/kT}$$

obtain an expression for the average number of photons.

|   | Photons                          |  |  |  |  |  |  |
|---|----------------------------------|--|--|--|--|--|--|
| ( | •••                              |  |  |  |  |  |  |
|   | $3 E = 3\hbar\omega$             |  |  |  |  |  |  |
|   | $2 E = 2\hbar\omega$             |  |  |  |  |  |  |
|   | $\underline{1} E = \hbar \omega$ |  |  |  |  |  |  |
|   | <b>0</b> <i>E</i> = 0            |  |  |  |  |  |  |

### SOLUTION:

$$P_n = \frac{1}{Z} e^{-nx}, \ x \equiv \frac{\hbar\omega}{kT}$$

$$\langle n \rangle = \frac{\sum_{n} n P_n}{\sum_{n} P_n} = \frac{\sum_{n} n e^{-nx}}{\sum_{n} e^{-nx}}$$

$$\sum_{n} e^{-nx} = 1 + e^{-x} + \dots = \frac{1}{1 - e^{-x}}$$

Since 
$$\frac{d}{dx}\sum_{n} e^{-nx} = \frac{d}{dx}\left(\frac{1}{1-e^{-x}}\right) = -\frac{e^{-x}}{(1-e^{-x})^2}$$

we have 
$$\sum_{n} n e^{-nx} = \frac{e^{-x}}{(1 - e^{-x})^2}$$

Hence 
$$\langle n \rangle = \frac{e^{-x}}{1 - e^{-x}} = \frac{1}{e^x - 1} = \frac{1}{e^{\hbar \omega/kT} - 1}$$

**5.4.** Consider a quantum dot with "g" degenerate levels, all with the same energy  $\varepsilon$ , in equilibrium with a reservoir with electrochemical potential  $\mu$  and temperature T. If there were no interactions, the average number of electrons at equilibrium would be given by

$$< n > = \frac{g}{1 + e^{(\varepsilon - \mu)/kT}}$$

Assuming that different states are occupied with probability

$$P_i = \frac{1}{Z} e^{-E_i/kT}$$

obtain an expression for the average number of electrons if the electron-electron interaction is so large that no more than one of the "g" levels can be occupied at the same time.

#### **SOLUTION:**

There is one zero-electron state with probability

$$P_0 = \frac{1}{Z}$$

and "g" one-electron states each with a probability

$$P_{1} = \frac{e^{-x}}{Z}, \quad x \equiv \frac{\varepsilon - \mu}{kT}$$

$$< n > = \frac{\sum_{n} nP_{n}}{\sum_{n} P_{n}} = \frac{gP_{1}}{P_{0} + gP_{1}}$$

$$< n > = \frac{ge^{-x}}{1 + ge^{-x}} = -\frac{g}{g + e^{x}} = -\frac{g}{g + e^{(\varepsilon - \mu)/kT}}$$

**5.5.** Suppose the reservoir is composed of many identical subsystems each with energy levels  $\tilde{E}_i$  occupied according to probabilities  $\tilde{p}_i$ . Show that the entropy can be expressed as

$$S = k \, \ell n W(\tilde{p}_i) = -k \sum_i \tilde{p}_i \, \ell n \, \tilde{p}_i$$

| $ \{E_i, \tilde{p}_i\} $                         | $ \{ E_i, \tilde{p}_i \} $            | $ \{E_i, \tilde{p}_i\} $                         |  |  |  |
|--------------------------------------------------|---------------------------------------|--------------------------------------------------|--|--|--|
| $ \{E_i, \tilde{p}_i\} $                         | $ \{E_i, \tilde{p}_i\} $              | $ \{E_i, \tilde{p}_i\} $                         |  |  |  |
| $\begin{bmatrix} E_i, \tilde{p}_i \end{bmatrix}$ | $\left\{ E_i ,  \tilde{p}_i \right\}$ | $\begin{bmatrix} E_i, \tilde{p}_i \end{bmatrix}$ |  |  |  |

### SOLUTION:

See Section 16.5.1 of notes.

**5.6.** What is the entropy per spin ( $\rho$ : density matrix)

$$S = -k \operatorname{Trace}[\rho \ln \rho]$$

corresponding to each of these four collections of spins

a) All pointing along +z
b) All pointing along +x
c) Randomly pointing along ±z
d) Randomly pointing along ±x

(a) 
$$\rho = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
  
 $S = -k \ Trace \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} ln1 & 0 \\ 0 & ln0 \end{bmatrix} = 0$   
(b)  $\rho = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ 

Can transform basis so that

$$\rho = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

since Trace is invariant under basis transformation S = 0 as in (a).

(c), (d) 
$$\rho = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
  
 $S = -k \ Trace \ \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} \ln 1/2 & 0 \\ 0 & \ln 1/2 \end{bmatrix} = k \ \ln 2$ 

**5.7.** The plot below shows the average number of electrons as a function of the electrochemical potential  $\mu$  for a single quantum dot with two spin-degenerate levels with energy  $\varepsilon = 10$ kT and interaction energy U=20kT, in equilibrium with a reservoir with an electrochemical potential  $\mu$ .

Explain the values of  $\mu$  at which the transitions in  $\langle N \rangle$  from 0 to 1 and from 1 to 2 occur. Hint: Consider low temperatures, such that  $p_i \approx 1$  for state that has the minimum value of  $(E_i - \mu N_i)$  and  $p_i \approx 0$  for all other states.



**SOLUTION:** 

| $E_i - \mu N_i$             |
|-----------------------------|
| 0                           |
| $\varepsilon - \mu$         |
| $\varepsilon - \mu$         |
| $2\varepsilon + U_0 - 2\mu$ |
|                             |

Transition from N=0 to N=1 occurs when

$$\varepsilon - \mu_1 = 0 \rightarrow \mu_1 = \varepsilon$$

Transition from N=1 to N=2 occurs when

$$\varepsilon - \mu_2 = 2\varepsilon + U_0 - 2\mu_2 \rightarrow \mu_2 = \varepsilon + U_0$$

#### Probs. 5.8, 5.9 are based on the following description on this page.

The plot below shows the current as a function of the electrochemical potential  $\mu_2 = \mu_1 + qV$ (keeping  $\mu_1$  fixed) for a single quantum dot with two spin-degenerate levels with energy  $\varepsilon$  = 10kT and interaction energy U=20kT.

4 many-electron levels These plots are obtained numerically by first calculating the steadystate occupation probabilities for each of the four many-electron levels using the equation

$$11 \frac{E = 2\varepsilon + U_0}{11}$$

01  $-\frac{E}{E} = \varepsilon$  10

E = 0

00

$$\frac{d}{dt} \begin{cases} P_{00} \\ P_{01} \\ P_{10} \\ P_{11} \end{cases} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} = \begin{bmatrix} W_1 + W_2 \end{bmatrix} \begin{cases} P_{00} \\ P_{01} \\ P_{10} \\ P_{10} \\ P_{11} \end{cases}$$

and then finding the current from either of the relations:



(1)

Here the W<sub>1</sub> and W<sub>2</sub> matrices describing the transition rates between the different states due to electron exchange with contacts 1 and 2 respectively:

$$W_{1} = \gamma_{1} \begin{bmatrix} -2f_{1} & 1 - f_{1} & 1 - f_{1} & 0 \\ f_{1} & -(1 - f_{1} + f_{1}^{'}) & 0 & 1 - f_{1}^{'} \\ f_{1} & 0 & -(1 - f_{1} + f_{1}^{'}) & 1 - f_{1}^{'} \\ 0 & f_{1}^{'} & f_{1}^{'} & -2(1 - f_{1}^{'}) \end{bmatrix}$$
(3)  
where  $f_{1} \equiv \frac{1}{1 + e^{(\varepsilon - \mu_{1})/kT}}, \qquad f_{1}^{'} \equiv \frac{1}{1 + e^{(\varepsilon + U_{0} - \mu_{1})/kT}}$ (4)

 $\gamma_1$  is a constant denoting the rate at which an electron in the dot escapes into contact 1 if a state is available. The matrix W<sub>2</sub> is written similarly, replacing  $\gamma_1, f_1, f_1'$  with the corresponding quantities  $\gamma_2, f_2, f_2'$ . The two rates  $\gamma_1$  and  $\gamma_2$  were assumed equal in the simulation.

5.8. The current-voltage characteristics show two current plateaus one approximately 2/3of the other. To understand the first plateau assume

 $f_1 = 1, f_2 = 0, f_1' = 0, f_2' = 0:$ 

In words, electrons with energy  $\varepsilon$  are available from contact 1 but not from contact 2 and electrons with energy  $\varepsilon + U_0$  are not available from either contact.

(a) What are the probabilities  $P_{00}$ ,  $P_{01}$ ,  $P_{10}$  and  $P_{11}$ ?

(b) What is the current ?

**SOLUTION:** Assume  $\gamma_1 = \gamma_2 = \gamma$ , from (3)

$$W_1 = \gamma \begin{bmatrix} -2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix} \qquad \qquad W_2 = \gamma \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 - 1 & 0 & 1 \\ 0 & 0 - 1 & 1 \\ 0 & 0 & 0 -2 \end{bmatrix}$$

From (1),  

$$\begin{cases}
0 \\
0 \\
0 \\
0
\end{cases} = \gamma \begin{bmatrix}
-2 & 1 & 1 & 0 \\
1 & -1 & 0 & 2 \\
1 & 0 & -1 & 2 \\
0 & 0 & 0 & -4
\end{bmatrix}
\begin{bmatrix}
P_{00} \\
P_{01} \\
P_{10} \\
P_{11}
\end{bmatrix}$$

Easy to show that

 $P_{00} = P_{01} = P_{10} = 1/3$  and  $P_{11} = 0$ satisfies the above equation.

From (2),

$$I = \gamma \{ 0 \ 1 \ 1 \ 2 \} \begin{bmatrix} -2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \\ 0 \end{bmatrix}$$

$$= \gamma \left\{ 0 \quad 1 \quad 1 \quad 2 \right\} \left\{ \begin{matrix} -2/3 \\ 1/3 \\ 1/3 \\ 0 \end{matrix} \right\} = \frac{2}{3} \gamma$$

5.9. To understand the second plateau assume

 $f_1 = 1, f_2 = 0, f_1' = 1, f_2' = 0,$ 

In words, electrons with energy  $\varepsilon$  as well as energy  $\varepsilon + U_0$  are available from contact 1, but not from contact 2.

- (a) What are the probabilities  $P_{00}$ ,  $P_{01}$ ,  $P_{10}$  and  $P_{11}$ ?
- (b) What is the current ?

**SOLUTION:** Assume  $\gamma_1 = \gamma_2 = \gamma$ , from (3)

$$W_1 = \gamma \begin{bmatrix} -2 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \qquad W_2 = \gamma \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 -1 & 0 & 1 \\ 0 & 0 -1 & 1 \\ 0 & 0 & 0 -2 \end{bmatrix}$$

From (1),

$$\begin{cases} 0\\0\\0\\0\\0 \end{cases} = \gamma \begin{bmatrix} -2 & 1 & 1 & 0\\1 & -2 & 0 & 1\\1 & 0 & -2 & 1\\0 & 1 & 1 & -2 \end{bmatrix} \begin{pmatrix} P_{00}\\P_{01}\\P_{10}\\P_{11} \end{pmatrix}$$

Easy to show that

 $P_{00} = P_{01} = P_{10} = P_{11} = \frac{1}{4}$  satisfies the above equation.

From (2),

$$I = \gamma \{0 \ 1 \ 1 \ 2 \} \begin{bmatrix} -2 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$

$$= \gamma \{ 0 \ 1 \ 1 \ 2 \} \begin{cases} -1/2 \\ 0 \\ 0 \\ 1/2 \end{cases} = \gamma$$

5.10. Consider two coupled quantum dots each with two spin-degenerate levels,

described by the one-electron Hamiltonian,  $\mathcal{E} \mathcal{E}$ 

$$h = \begin{bmatrix} \varepsilon & t & 0 & 0 \\ t & \varepsilon & 0 & 0 \\ 0 & 0 & \varepsilon & t \\ 0 & 0 & t & \varepsilon \end{bmatrix}$$



having an intra-dot interaction energy U and zero inter-dot interaction energy.

| Useful | result: | Eigenvalues | of | a  | $\begin{vmatrix} a & 0 & t & t \end{vmatrix}$ |   | t |            |    |   |     |
|--------|---------|-------------|----|----|-----------------------------------------------|---|---|------------|----|---|-----|
|        |         |             |    | 0  | а                                             | t | t | <i>avo</i> |    | h | and |
|        |         |             |    | t  | t                                             | b | 0 | ure        | a, | U | anu |
|        |         |             |    | _t | t                                             | 0 | b |            |    |   |     |
|        |         |             |    |    |                                               |   |   |            |    |   |     |

 $\frac{(a+b) \pm \sqrt{(a-b)^2 + 16t^2}}{2}$ 

- (a) The eigenvalues of which matrix will give you the energies of the *one-electron* states? What is the lowest energy, assuming t is a negative number?
- (b) The eigenvalues of which matrix will give you the energies of the *two-electron* states? What is the lowest energy?
- (c) At what values of  $\mu$  does the total number of electrons change from N = 0 to 1 to 2?

(a) 
$$H_{1} = \begin{bmatrix} u_{1} & u_{2} & d_{1} & d_{2} \\ \varepsilon & t & 0 & 0 \\ t & \varepsilon & 0 & 0 \\ 0 & 0 & \varepsilon & t \\ 0 & 0 & t & \varepsilon \end{bmatrix}$$

*Lowest energy* =  $\varepsilon + t$ 

assuming t is negative.

$$H_{2} = \begin{cases} u_{1}d_{1} & u_{2}d_{2} & u_{1}d_{2} & u_{2}d_{1}u_{1}u_{2}d_{1}d_{2} \\ 2\varepsilon + U & 0 & t & t & 0 & 0 \\ 0 & 2\varepsilon + U & t & t & 0 & 0 \\ t & t & 2\varepsilon & 0 & 0 & 0 \\ t & t & 0 & 2\varepsilon & 0 & 0 \\ 0 & 0 & 0 & 0 & 2\varepsilon & 0 \\ 0 & 0 & 0 & 0 & 0 & 2\varepsilon \end{bmatrix}$$

$$Lowest Energy = \frac{2\varepsilon + (2\varepsilon + U) - \sqrt{U^{2} + 16t^{2}}}{2}$$

$$= 2\varepsilon + \frac{U}{2} - \sqrt{\left(\frac{U}{2}\right)^{2} + 4t^{2}} = 2\varepsilon - \Delta$$

$$where \quad \Delta \equiv \sqrt{\left(\frac{U}{2}\right)^{2} + 4t^{2}} - \frac{U}{2}$$

(c) 
$$0 = \varepsilon + t - \mu_1 \rightarrow \mu_1 = \varepsilon + t$$
  
 $\varepsilon + t - \mu_2 = 2\varepsilon - \Delta - 2\mu_2 \rightarrow \mu_2 = \varepsilon - t - \Delta$