ECE 659 EXAM V Monday May 4, 2015, EE 117 8A-10A

NAME :
SOLUTION

CLOSED BOOK

All five questions carry equal weight

Please show all work.
No credit for just writing down the answer, even if correct.
5.1.

Consider a channel exchanging electrons and energies with three reservoirs as shown.
(a) What relationship among the different quantities $\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{0}\right)$ is required by
(i) Conservation of number of electrons
(ii) Conservation of energy
(iii) Second law of thermodynamics:
(b) Two materials A and B have different density of states D_{A} and D_{B} for electrons in a certain energy range. If these materials are in equilibrium with electrons flowing freely between them, will the number of electrons in this energy range in the two materials n_{A} and n_{B} be equal? If not, what will be the ratio $\frac{n_{A}}{n_{B}}$? Explain.

SOLUTION:

(a) $N_{1}+N_{2}=0$

$$
\begin{aligned}
& E_{1}+E_{2}+E_{0}=0 \\
& \frac{E_{1}-\mu_{1} N_{1}}{T_{1}}+\frac{E_{2}-\mu_{2} N_{2}}{T_{2}}+\frac{E_{0}}{T_{0}} \leq 0
\end{aligned}
$$

(b)

$$
\frac{n_{A}}{n_{B}}=\frac{D_{A}}{D_{B}} \text { so that the same fraction of states is occupied in either case. }
$$

5.2. Consider a quantum dot with 4 degenerate levels, all with the same energy ε, in equilibrium with a reservoir with electrochemical potential μ and temperature T. If there were no interactions, the average number of electrons at equilibrium would be given by

$$
\langle n\rangle=\frac{4}{1+e^{(\varepsilon-\mu) / k T}}
$$

Obtain an expression for the average number of electrons if the electron-electron interaction is so large that no more than one of the 4 levels can be occupied at the same time.

SOLUTION:

There is one zero-electron state with probability

$$
P_{0}=\frac{1}{Z}
$$

and 4 one-electron states each with a probability

$$
\begin{aligned}
& P_{1}=\frac{e^{-x}}{Z}, \quad x \equiv \frac{\varepsilon-\mu}{k T} \\
& <n>=\frac{\sum_{n}^{n} n P_{n}}{\sum_{n} P_{n}}=\frac{4 P_{1}}{P_{0}+4 P_{1}} \\
& <n>=\frac{4 e^{-x}}{1+4 e^{-x}}=\frac{4}{4+e^{x}}=\frac{4}{4+e^{(\varepsilon-\mu) / k T}}
\end{aligned}
$$

5.3. Consider a single quantum dot with just one level with energy ε. We wish to find the current as a function of the electrochemical potential $\mu_{2}=\mu_{1}+q V$ (keeping μ_{1} fixed) using the Fock space picture by writing

$$
\frac{d}{d t}\left\{\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}=\left[W_{1}+W_{2}\right]\left\{\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right\}
$$

where the W_{1} and W_{2} matrices describe the transition rates between the different states due to electron exchange with contacts 1 and 2 respectively which are held in equilibrium with electrochemical potentials μ_{1} and μ_{2}.
(a) Write down the matrices W_{1} and W_{2} is terms of the Fermi functions in contacts 1, 2 .
(b) Obtain the steady-state probabilities P_{0} and P_{1}.
(c) Obtain the steady-state current.

SOLUTION:

(a)
$W_{1}=\gamma_{1}\left[\begin{array}{cc}-f_{1} & 1-f_{1} \\ +f_{1} & -\left(1-f_{1}\right)\end{array}\right] \quad W_{2}=\gamma_{2}\left[\begin{array}{cc}-f_{2} & 1-f_{2} \\ +f_{2} & -\left(1-f_{2}\right)\end{array}\right]$
(b)
$\left\{\begin{array}{l}0 \\ 0\end{array}\right\}=\left[\begin{array}{lr}-\gamma_{1} f_{1}-\gamma_{2} f_{2} & \gamma_{1}\left(1-f_{1}\right)+\gamma_{2}\left(1-f_{2}\right) \\ \gamma_{1} f_{1}+\gamma_{2} f_{2} & -\gamma_{1}\left(1-f_{1}\right)-\gamma_{2}\left(1-f_{2}\right)\end{array}\right]\left\{\begin{array}{l}P_{0} \\ P_{1}\end{array}\right\}$

$$
\frac{P_{1}}{P_{0}}=\frac{\gamma_{1} f_{1}+\gamma_{2} f_{2}}{\gamma_{1}\left(1-f_{1}\right)+\gamma_{2}\left(1-f_{2}\right)} \rightarrow \quad P_{1}=\frac{\gamma_{1} f_{1}+\gamma_{2} f_{2}}{\gamma_{1}+\gamma_{2}}, \quad P_{0}=1-P_{1}
$$

(c)

$$
\begin{gathered}
I=q \gamma_{1}\left\{\begin{array}{ll}
0 & 1
\end{array}\right\}\left[\begin{array}{cc}
-f_{1} & 1-f_{1} \\
+f_{1} & -\left(1-f_{1}\right)
\end{array}\right]\left\{\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right\}=q \gamma_{1}\left(f_{1} P_{0}-\left(1-f_{1}\right) P_{1}\right)=\gamma_{1}\left(f_{1}-P_{1}\right) \\
\quad=q \gamma_{1}\left(f_{1}-\frac{\gamma_{1} f_{1}+\gamma_{2} f_{2}}{\gamma_{1}+\gamma_{2}}\right)=q \frac{\gamma_{1} \gamma_{2}}{\gamma_{1}+\gamma_{2}}\left(f_{1}-f_{2}\right)
\end{gathered}
$$

5.4. Consider two coupled quantum dots each with two spin-degenerate levels, described by the one-electron
Hamiltonian,
$h=\begin{gathered}u_{1} \\ u_{2}\end{gathered} d_{1} d_{2},\left[\begin{array}{cccc}\varepsilon & t & 0 & 0 \\ t & \varepsilon & 0 & 0 \\ 0 & 0 & \varepsilon & t \\ 0 & 0 & t & \varepsilon\end{array}\right]$

having an intra-dot interaction energy U and zero inter-dot interaction energy.

Useful result: Eigenvalues of $\left[\begin{array}{cccc}a & 0 & t & t \\ 0 & a & t & t \\ t & t & b & 0 \\ t & t & 0 & b\end{array}\right]$ are
a, b and $\frac{(a+b) \pm \sqrt{(a-b)^{2}+16 t^{2}}}{2}$
(a) At what value of μ does the total number of electrons change from $N=2$ to 3 ?
(b) At what value of μ does the total number of electrons change from $\mathrm{N}=3$ to 4 ?

SOLUTION:

$$
\text { Two-electron states } H_{2}=\left[\begin{array}{cccccc}
u_{1} d_{1} & u_{2} d_{2} & u_{1} d_{2} & u_{2} d_{1} & u_{1} u_{2} & d_{1} d_{2} \\
{\left[\begin{array}{ccccccc}
2 \varepsilon+U & 0 & t & t & 0 & 0 \\
0 & 2 \varepsilon+U & t & t & 0 & 0 \\
t & t & 2 \varepsilon & 0 & 0 & 0 \\
t & t & 0 & 2 \varepsilon & 0 & 0 \\
0 & 0 & 0 & 0 & 2 \varepsilon & 0 \\
0 & 0 & 0 & 0 & 0 & 2 \varepsilon
\end{array}\right]}
\end{array}\right.
$$

$\min (E-\mu N)=\frac{2 \varepsilon+2 \varepsilon+U-\sqrt{U^{2}+16 t^{2}}}{2}-2 \mu=2 \varepsilon-2 \mu+\frac{U}{2}-\sqrt{\left(\frac{U}{2}\right)^{2}+4 t^{2}}$

Three-electron states

$$
\begin{gathered}
u_{2} d_{1} d_{2} \\
u_{1} d_{1} d_{2} \\
u_{1} u_{2} d_{2}
\end{gathered} u_{1} u_{2} d_{1},\left[\begin{array}{cccc}
3 \varepsilon+U & t & 0 & 0 \\
t & 3 \varepsilon+U & 0 & 0 \\
0 & 0 & 3 \varepsilon+U & t \\
0 & 0 & t & 3 \varepsilon+U
\end{array}\right]\left[\begin{array}{l}
H_{3}=\left[\begin{array}{ll}
\\
\min (E-\mu N)=3 \varepsilon+U-|t|-3 \mu & =2 \mu+\frac{U}{2}-\sqrt{\left(\frac{U}{2}\right)^{2}+4 t^{2}}
\end{array}\right.
\end{array}\right.
$$

Four-electron states

$$
\begin{aligned}
& u_{1} u_{2} d_{1} d_{2} \\
& {[2 \varepsilon+2 U]}
\end{aligned}
$$

$$
\min (E-\mu N)=4 \varepsilon+2 U-4 \mu
$$

(a) $N=2$ to $N=3$:

$$
\begin{array}{r}
2 \varepsilon-2 \mu+\frac{U}{2}-\sqrt{\left(\frac{U}{2}\right)^{2}+4 t^{2}}=3 \varepsilon+U-|t|-3 \mu \\
\mu(2 \rightarrow 3)=\varepsilon+\frac{U}{2}-|t|+\sqrt{\left(\frac{U}{2}\right)^{2}+4 t^{2}}
\end{array}
$$

(a) $N=3$ to $N=4$:

$$
\begin{aligned}
3 \varepsilon+U-|t|-3 \mu & =4 \varepsilon+2 U-4 \mu \\
\mu(3 \rightarrow 4) & =\varepsilon+|t|+U
\end{aligned}
$$

5.5. What is the entropy per spin (ρ : density matrix)

$$
S=-k \operatorname{Trace}[\rho \ln \rho]
$$

corresponding to each of these three collections of spins
a) All pointing along $+z$
b) All pointing along $+y$
c) 50% pointing along $+\mathrm{x}, 50 \%$ along -x

Please write down the density matrix in each case, in $\pm \mathrm{z}$ basis

SOLUTION:

(a)

$$
\begin{aligned}
\rho & =\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
S & =-k \operatorname{Trace}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{lr}
\ln 1 & 0 \\
0 & \ln 0
\end{array}\right]=0
\end{aligned}
$$

(b)

$$
\rho=\frac{1}{2}\binom{1}{i}(1 \quad-i)=\frac{1}{2}\left[\begin{array}{cc}
1 & -i \\
+i & 1
\end{array}\right]
$$

Diagonalizing

$$
\begin{gathered}
\rho=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
S=-k \text { Trace }\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\ln 1 & 0 \\
0 & \ln 0
\end{array}\right]=0
\end{gathered}
$$

(c)

$$
\rho=0.5 * \frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+0.5 * \frac{1}{2}\left[\begin{array}{lr}
1 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{lr}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right]
$$

Hence

$$
S=-k \operatorname{Trace}\left[\begin{array}{lr}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right]\left[\begin{array}{ll}
\ln 1 / 2 & 0 \\
0 & \ln 1 / 2
\end{array}\right]=k \ln 2
$$

Have a great summer !!

