ECE 659 EXAM V
 Tuesday May 6, 2014, FRNY B124 8-10AM

NAME : _SOLUTION

CLOSED BOOK

All five questions carry equal weight
Please show all work.
No credit for just writing down the answer, even if correct.
5.1.

Consider a channel exchanging electrons and energies with three reservoirs as shown.
(a) What relationship among the different quantities $\left(N_{1}, N_{2}, E_{1}, E_{2}, E_{0}\right)$ is required by
(i) Conservation of number of electrons
(ii) Conservation of energy
(iii) Second law of thermodynamics:
(b) Is our current formula for an elastic resistor

$$
I=\frac{1}{q} \int d E G(E)\left(f_{1}(E)-f_{2}(E)\right)
$$

in compliance with the second law? Explain

SOLUTION:

Please see introductory material (before Section 16.1) in Lecture 16 of Text (LNE)
5.2. Consider a system having three degenerate levels with energy ε having an electronelectron interaction energy related to the number of electrons N by the relation

$$
U(N)=\frac{U_{0}}{2} N(N-1)
$$

At what values of the electrochemical potential μ, will the equilibrium number of electrons change from 0 to 1 , from 1 to 2 and from 2 to 3 ?

SOLUTION:

States

$$
E_{i}-\mu N_{i}
$$

000
0
001,010,100

$$
\varepsilon-\mu
$$

011,101,110
$2 \varepsilon+U_{0}-2 \mu$
111

$$
3 \varepsilon+3 U_{0}-3 \mu
$$

Transition from $\mathrm{N}=0$ to $\mathrm{N}=1$ occurs when

$$
\varepsilon-\mu_{1}=0 \rightarrow \mu_{1}=\varepsilon
$$

Transition from $\mathrm{N}=1$ to $\mathrm{N}=2$ occurs when

$$
\varepsilon-\mu_{2}=2 \varepsilon+U_{0}-2 \mu_{2} \rightarrow \mu_{2}=\varepsilon+U_{0}
$$

Transition from $\mathrm{N}=2$ to $\mathrm{N}=3$ occurs when

$$
3 \varepsilon+3 U_{0}-3 \mu_{3}=2 \varepsilon+U_{0}-2 \mu_{3} \rightarrow \quad \mu_{3}=\varepsilon+2 U_{0}
$$

5.3. Consider a single quantum dot with just one level with energy ε. We wish to find the current as a function of the electrochemical potential $\mu_{2}=\mu_{1}+q V$ (keeping μ_{1} fixed) using the Fock space picture by writing

$$
\frac{d}{d t}\left\{\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}=\left[W_{1}+W_{2}\right]\left\{\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right\}
$$

where the W_{1} and W_{2} matrices describe the transition rates between the different states due to electron exchange with contacts 1 and 2 respectively which are held in equilibrium with electrochemical potentials μ_{1} and μ_{2}.
(a) Write down the matrices W_{1} and W_{2} is terms of the Fermi functions in contacts 1, 2 .
(b) Obtain the steady-state probabilities P_{0} and P_{1}.
(c) Obtain the steady-state current.

SOLUTION:

(a)

$$
W_{1}=\gamma_{1}\left[\begin{array}{cc}
-f_{1} & 1-f_{1} \\
+f_{1} & -\left(1-f_{1}\right)
\end{array}\right] \quad W_{2}=\gamma_{2}\left[\begin{array}{cc}
-f_{2} & 1-f_{2} \\
+f_{2} & -\left(1-f_{2}\right)
\end{array}\right]
$$

(b)

$$
\begin{aligned}
& \left\{\begin{array}{l}
0 \\
0
\end{array}\right\}=\left[\begin{array}{ll}
-\gamma_{1} f_{1}-\gamma_{2} f_{2} & \gamma_{1}\left(1-f_{1}\right)+\gamma_{2}\left(1-f_{2}\right) \\
\gamma_{1} f_{1}+\gamma_{2} f_{2} & -\gamma_{1}\left(1-f_{1}\right)-\gamma_{2}\left(1-f_{2}\right)
\end{array}\right]\left\{\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right\} \\
& \frac{P_{1}}{P_{0}}=\frac{\gamma_{1} f_{1}+\gamma_{2} f_{2}}{\gamma_{1}\left(1-f_{1}\right)+\gamma_{2}\left(1-f_{2}\right)} \rightarrow P_{1}=\frac{\gamma_{1} f_{1}+\gamma_{2} f_{2}}{\gamma_{1}+\gamma_{2}}, \quad P_{0}=1-P_{1}
\end{aligned}
$$

(c)

$$
\begin{gathered}
I=q \gamma_{1}\left\{\begin{array}{ll}
0 & 1
\end{array}\right\}\left[\begin{array}{cc}
-f_{1} & 1-f_{1} \\
+f_{1} & -\left(1-f_{1}\right)
\end{array}\right]\left\{\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right\}=q \gamma_{1}\left(f_{1} P_{0}-\left(1-f_{1}\right) P_{1}\right)=\gamma_{1}\left(f_{1}-P_{1}\right) \\
\quad=q \gamma_{1}\left(f_{1}-\frac{\gamma_{1} f_{1}+\gamma_{2} f_{2}}{\gamma_{1}+\gamma_{2}}\right)=q \frac{\gamma_{1} \gamma_{2}}{\gamma_{1}+\gamma_{2}}\left(f_{1}-f_{2}\right)
\end{gathered}
$$

5.4. Consider two coupled quantum dots each with two spin-degenerate levels, described by the one-electron Hamiltonian,

$$
h=\begin{gathered}
u_{1} u_{2} \\
d_{1}
\end{gathered} d_{2},\left[\begin{array}{cccc}
\varepsilon & t & 0 & 0 \\
t & \varepsilon & 0 & 0 \\
0 & 0 & \varepsilon & t \\
0 & 0 & t & \varepsilon
\end{array}\right]
$$

having an intra-dot interaction energy U and zero inter-dot interaction energy. Write down the matrices whose eigenvalues will give you the energies of the
(a) Zero-electron states
(b) One-electron states
(c) Two-electron states
(d) Three-electron states
(a) Four-electron states

SOLUTION:

(a) Zero-electron states

0
$H_{0}=[0]$

$$
\begin{gathered}
u_{1} u_{2} d_{1} d_{2} \\
H_{1}=h=\left[\begin{array}{cccc}
\varepsilon & t & 0 & 0 \\
t & \varepsilon & 0 & 0 \\
0 & 0 & \varepsilon & t \\
0 & 0 & t & \varepsilon
\end{array}\right] \\
H_{2}=\left[\begin{array}{cccccc}
u_{1} d_{1} & u_{2} d_{2} & u_{1} d_{2} & u_{2} d_{1} & u_{1} u_{2} & d_{1} d_{2} \\
2 \varepsilon+U & 0 & t & t & 0 & 0 \\
0 & 2 \varepsilon+U & t & t & 0 & 0 \\
t & t & 2 \varepsilon & 0 & 0 & 0 \\
t & t & 0 & 2 \varepsilon & 0 & 0 \\
0 & 0 & 0 & 0 & 2 \varepsilon & 0 \\
0 & 0 & 0 & 0 & 0 & 2 \varepsilon
\end{array}\right]
\end{gathered}
$$

(d) Three-electron states
$H_{3}=\left[\begin{array}{cccc}u_{2} d_{1} d_{2} & u_{1} d_{1} d_{2} & u_{1} u_{2} d_{2} & u_{1} u_{2} d_{1} \\ {\left[\begin{array}{cccc}3 \varepsilon+U & t & 0 & 0 \\ t & 3 \varepsilon+U & 0 & 0 \\ 0 & 0 & 3 \varepsilon+U & t \\ 0 & 0 & t & 3 \varepsilon+U\end{array}\right]}\end{array}\right.$
(e) Four-electron states

$$
\begin{aligned}
& u_{1} u_{2} d_{1} d_{2} \\
& {[2 \varepsilon+2 U]}
\end{aligned}
$$

5.5. What is the entropy per spin (ρ : density matrix)
$S=-k \operatorname{Trace}[\rho \ln \rho]$
corresponding to a collection of spins,
(a) 50% of which point along $+x$ and 50% along $-x$?
(b) 75% of which point along $+x$ and 25% along $-x$?
(c) 100% of which point along $+x$?

Note: Wavefunction for (a) spin along $+\mathrm{x}: \frac{1}{\sqrt{2}}\left\{\begin{array}{l}1 \\ 1\end{array}\right\}$, (b) for spin along -x : $\frac{1}{\sqrt{2}}\left\{\begin{array}{c}1 \\ -1\end{array}\right\}$

SOLUTION:

(a) $\rho=0.5 * \frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]+0.5 * \frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right]$
$S=-k \operatorname{Trace}\left[\begin{array}{lr}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right]\left[\begin{array}{ll}\ln 1 / 2 & 0 \\ 0 & \ln 1 / 2\end{array}\right]=k \ln 2$
(b) $\rho=0.75 * \frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]+0.25 * \frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}1 / 2 & 1 / 4 \\ 1 / 4 & 1 / 2\end{array}\right]$

Diagonalizing

$$
\rho=\left[\begin{array}{rc}
3 / 4 & 0 \\
0 & 1 / 4
\end{array}\right]
$$

Hence

$$
S=-k \operatorname{Trace}\left[\begin{array}{lr}
3 / 4 & 0 \\
0 & 1 / 4
\end{array}\right]\left[\begin{array}{ll}
\ln 3 / 4 & 0 \\
0 & \ln 1 / 4
\end{array}\right]=-k\left(\frac{3}{4} \ln \frac{3}{4}+\frac{1}{4} \ln \frac{1}{4}\right)
$$

(c) $\rho=\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

Diagonalizing

$$
\rho=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Hence

$$
S=-k \text { Trace }\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\ln 1 & 0 \\
0 & \ln 0
\end{array}\right]=0
$$

